关闭
当前搜索:

HEAP CORRUPTION DETECTED:before Normal block(#102584) at 0x00000243EA0CB070

问题描述:这是在训练途中发生的错误,在训练前期一切正常,所以从数据的预处理和网络层的配置应该都是没有问题的。                  在迭  代到一定次数的时候发生了这个问题。(摘自网络)Debug error:Damage before/after normal block.如果编译器这样报错,几乎可以肯定是在程序中,数组访问越界。什么是normal block?在使用new 操作符为......
阅读(7) 评论(0)

Check failed: data_

问题描述:显示数据错误    因为我起初的数据处理成了28*28的,而该网络层数设置较多,导致网络进行到池化层pool5的时候,输入图像持仓已经小于kernel核的大小了。经过池化之后,下一步输入就变成了0*0,所以会报错。解决办法:减少层数,或者增大数据预处理尺寸,或者减小kernel核。这个问题就会解决了。......
阅读(7) 评论(0)

Check failed:datum_height > = crop_size(32 vs.227)

根据提示,问题是crop_size的尺寸不匹配,该网络默认crop_size的尺寸是227*227,而我在数据的预处理阶段把数据处理成了32*32,所以会出现这个问题。解决办法:在train_val.prototxt文件中将其修改为32*32后就可以了。......
阅读(6) 评论(0)

DL训练中电脑内存问题

本文主要译介自Graphcore在2017年1月的这篇博客: Why is so much memory needed for deep neural networks。介绍了深度学习中内存的开销,以及降低内存需求的几种解决方案。 为便于阅读,本文修改了原文分段,并添加更详细的计算说明。深度学习的内存消耗在哪里?回顾:简单例子考虑一个单层线......
阅读(19) 评论(0)

Check failed: proto SerializeToOstream(&output)

问题描述:这个问题我是在生成均值文件的时候提示的,我看网友们很多是在训练过程提示的。 Check failed: proto.SerializeToOstream(&output) 解决方法:我删掉了桌面的一些东西,竟然可以用了。感人,根本不知道是怎么解决的。(如果在训练过程中出现问题,网友们说是存储空间不够了,但是绝大多数都是linux系统出现的问题),我的系统是windows...
阅读(22) 评论(0)

accuracy=0,loss=1.#QNAN(* 1 = 1.#QNAN loss)

这个问题可就复杂了,从头描述以下: 1、第一次训练遇到这个问题,如图 然后网友说,caffe的图像标签要从0开始,而且如果是3分类的问题的话,最后输出层要大于训练集的类别数目才可以,所以他把最后一层全连接层的输出改为了4或1000(>3),这个1000分类是什么鬼我不知道,应该是他用来测试大于3行不行吧,然后网友含泪说自己可以了。but,我还是不行。紧接着我就发现了下图: 不光是lo...
阅读(14) 评论(0)

Failed to parse NetParameter file; has no field named "layer"

问题描述:Error parsing text-format caffe.NetParameter:150:7: Message type "caffe.LayerParameter" has no field   named"layer"            Check failed:ReadProtoFromTextFile(param_file,param)Failed to pa...
阅读(15) 评论(0)

label_value < num_labels(134 vs.134)

问题如图 问题描述:就是在我训练刚开始的时候,还没出现loss和accuracy信息的时候就出现的问题。我这次训练一共134类,所以数字显示是134 vs.134 解决方法: 我就是改了一下drop层的括号就可以了。。。。。。他说的是accuracy_layer的信息,我改了一下dropout层的东西。貌似啥都没干,就好了。...
阅读(11) 评论(0)

axis_index < num_axes()(1 vs. 1) axis 1 out of range for 1-D Blob with shape*

问题如图: 解决办法:在Layer层的设置上,去看一下是不是你的label和data放反了,如下图: 这两个top的顺序不能颠倒,必须是先data,后label。...
阅读(12) 评论(0)

解决编译pycaffe时候出现缺少Python27_d.lib的解决方案

问题描述 最近在使用caffe调用python接口进行可视化的时候,发现总是出现“no module named caffe”这个问题,经过查询,好像是没有编译pycaffe,然后返回caffe-master/windows找到Caffe.sln。然后找到 对其右键重新生成(E),经过短暂的等待,出现了问题, 问题描述:缺少Python27_d.lib。 至于为啥是Python27...
阅读(105) 评论(0)

关于Caffe在最后测试单张数据集标签文档的问题

1、定义的synset_words.txt 最后测试得分的时候,是和这个标签文件中所写的东西的位置是有关系的,不是想怎么写就怎么写。 例如: 标签文件先这样写好, 然后测试: 显示“10”分类最可能 但是我将标签文件修改如下: 再次测试: 便得到这个图片,至于这个顺序是在哪里定下来的呢? 在这个地方:...
阅读(36) 评论(0)

关于测试自己的单张图片所需要的lenet.prototxt(deploy)文件

Depoly文件其实就是在刚刚定义定义层的参数的那个文件基础上进行修改的,delpoy文件只记录了网络结构,而并没有里面的反向计算,也不需要计算误差。我使用cifar10_quick_train_test.ptototxt进行修改,修改成对应的deploy文件.cifar10_quick_train_test.prototxt文件内容如下:name: "CIFAR10_quick" layer {...
阅读(36) 评论(0)

Caffe运行过程中遇到的问题

一、问题如图问题描述:大概就是solver文件参数出现了问题,或者路径的问题。再次注意,路径中使用“/",不要用"\"解决办法,我把cifar10_quick_solver.prototxt和cifar10_quick_solver_prototxt直接复制过来,上述问题就不出现了,可以又出现问题二。如下:二、问题如图:问题描述:大概就是需要一直重新加载数据,所以我又去重新制作了一下数据集。还是这...
阅读(28) 评论(0)

Caffe中文件参数设置(九-2):训练和测试自己的数据集-windows10版本

一、从网上自己下载数据集1.1我下载了两类图片,分别为“鸟”:30张;“猫”:30张(注意:随意下载即可) 二、数据集处理2.1批量重命名方法:将文件全部选中,然后右键点击重命名,修改如图所示:2.2批量转换图片大小(先预定设置成28*28)使用一般的看图软件就可以转换。(我这里使用2345看图王)注意:在样本转换为LEVEDB文件之前,需要把图片弄到同一大小,否则会出错。2.3准备训练和测试数据...
阅读(61) 评论(0)

Caffe中文件参数设置(九-1):训练和测试自己的图片-linux版本

在深度学习的实际应用中,我们经常用到的原始数据是图片文件,如jpg,jpeg,png,tif等格式的,而且有可能图片的大小还不一致。而在caffe中经常使用的数据类型是lmdb或leveldb,因此就产生了这样的一个问题:如何从原始图片文件转换成caffe中能够运行的db(leveldb/lmdb)文件?前面文章有学习过着个数据由来和使用。在caffe中,作者为我们提供了这样一个文件:conver...
阅读(85) 评论(0)

Caffe中文件参数设置(八):命令行解析

caffe的运行提供三种接口:c++接口(命令行)、python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两个接口。caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这个文件夹内。经过编译后,这些文件都被编...
阅读(25) 评论(0)

Caffe中文件参数设置(七):solver优化方法

上文提到,到目前为止,caffe总共提供了六种优化方法:Stochastic Gradient Descent (type: "SGD"),AdaDelta (type: "AdaDelta"),Adaptive Gradient (type: "AdaGrad"),Adam (type: "Adam"),Nesterov’s Accelerated Gradient (type: "Nester...
阅读(33) 评论(0)

Caffe中文件参数设置(五):Blob,Layer,Net以及对应配置文件的编写

深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的,以及如何在层之间通讯的。1、blobBlobs封装了运行时的数据信息,提供了C...
阅读(44) 评论(0)

caffe中文件参数设置(四):其它常用层及其参数设置

本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。1、softmax-losssoftmax-loss层和softmax层计算大致是相同的。softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广。Logistic R...
阅读(38) 评论(0)

Caffe中文件参数设置(三):激活层(Activiation Layers)及其参数设置

在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。输入:n*c*h*w输出:n*c*h*w常用的激活函数有sigmoid, tanh,relu等,下面分别介绍。1、Sigmoid对每个输入数据,利用sigmoid函数执行操作...
阅读(31) 评论(0)
31条 共2页1 2 下一页 尾页
    个人资料
    • 访问:1285次
    • 积分:255
    • 等级:
    • 排名:千里之外
    • 原创:20篇
    • 转载:11篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档