关闭
当前搜索:

解决编译pycaffe时候出现缺少Python27_d.lib的解决方案

问题描述 最近在使用caffe调用python接口进行可视化的时候,发现总是出现“no module named caffe”这个问题,经过查询,好像是没有编译pycaffe,然后返回caffe-master/windows找到Caffe.sln。然后找到 对其右键重新生成(E),经过短暂的等待,出现了问题, 问题描述:缺少Python27_d.lib。 至于为啥是Python27...
阅读(105) 评论(0)

关于Caffe在最后测试单张数据集标签文档的问题

1、定义的synset_words.txt 最后测试得分的时候,是和这个标签文件中所写的东西的位置是有关系的,不是想怎么写就怎么写。 例如: 标签文件先这样写好, 然后测试: 显示“10”分类最可能 但是我将标签文件修改如下: 再次测试: 便得到这个图片,至于这个顺序是在哪里定下来的呢? 在这个地方:...
阅读(36) 评论(0)

关于测试自己的单张图片所需要的lenet.prototxt(deploy)文件

Depoly文件其实就是在刚刚定义定义层的参数的那个文件基础上进行修改的,delpoy文件只记录了网络结构,而并没有里面的反向计算,也不需要计算误差。我使用cifar10_quick_train_test.ptototxt进行修改,修改成对应的deploy文件.cifar10_quick_train_test.prototxt文件内容如下:name: "CIFAR10_quick" layer {...
阅读(36) 评论(0)

Caffe运行过程中遇到的问题

一、问题如图问题描述:大概就是solver文件参数出现了问题,或者路径的问题。再次注意,路径中使用“/",不要用"\"解决办法,我把cifar10_quick_solver.prototxt和cifar10_quick_solver_prototxt直接复制过来,上述问题就不出现了,可以又出现问题二。如下:二、问题如图:问题描述:大概就是需要一直重新加载数据,所以我又去重新制作了一下数据集。还是这...
阅读(28) 评论(0)

Caffe中文件参数设置(九-2):训练和测试自己的数据集-windows10版本

一、从网上自己下载数据集1.1我下载了两类图片,分别为“鸟”:30张;“猫”:30张(注意:随意下载即可) 二、数据集处理2.1批量重命名方法:将文件全部选中,然后右键点击重命名,修改如图所示:2.2批量转换图片大小(先预定设置成28*28)使用一般的看图软件就可以转换。(我这里使用2345看图王)注意:在样本转换为LEVEDB文件之前,需要把图片弄到同一大小,否则会出错。2.3准备训练和测试数据...
阅读(61) 评论(0)

Caffe中文件参数设置(九-1):训练和测试自己的图片-linux版本

在深度学习的实际应用中,我们经常用到的原始数据是图片文件,如jpg,jpeg,png,tif等格式的,而且有可能图片的大小还不一致。而在caffe中经常使用的数据类型是lmdb或leveldb,因此就产生了这样的一个问题:如何从原始图片文件转换成caffe中能够运行的db(leveldb/lmdb)文件?前面文章有学习过着个数据由来和使用。在caffe中,作者为我们提供了这样一个文件:conver...
阅读(85) 评论(0)

Caffe中文件参数设置(八):命令行解析

caffe的运行提供三种接口:c++接口(命令行)、python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两个接口。caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这个文件夹内。经过编译后,这些文件都被编...
阅读(25) 评论(0)

Caffe中文件参数设置(七):solver优化方法

上文提到,到目前为止,caffe总共提供了六种优化方法:Stochastic Gradient Descent (type: "SGD"),AdaDelta (type: "AdaDelta"),Adaptive Gradient (type: "AdaGrad"),Adam (type: "Adam"),Nesterov’s Accelerated Gradient (type: "Nester...
阅读(34) 评论(0)

Caffe中文件参数设置(五):Blob,Layer,Net以及对应配置文件的编写

深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的,以及如何在层之间通讯的。1、blobBlobs封装了运行时的数据信息,提供了C...
阅读(44) 评论(0)

caffe中文件参数设置(四):其它常用层及其参数设置

本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。1、softmax-losssoftmax-loss层和softmax层计算大致是相同的。softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广。Logistic R...
阅读(38) 评论(0)

Caffe中文件参数设置(三):激活层(Activiation Layers)及其参数设置

在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。输入:n*c*h*w输出:n*c*h*w常用的激活函数有sigmoid, tanh,relu等,下面分别介绍。1、Sigmoid对每个输入数据,利用sigmoid函数执行操作...
阅读(31) 评论(0)

caffe中文件参数设置(二):视觉层(Vision Layers)及其参数设置

本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。1、Convolution层:就是卷积层,是卷积神经网络(CNN)的核心层。层类型:Convolution  lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文...
阅读(58) 评论(0)

caffe中文件参数设置(一):数据层说明

说明:caffe中文件参数设置,这个系列文章是我在学习过程中,找到的并且结合许多大牛所写总结转载的。并且会持续更新,按自己需求改写训练文件就好了,这里讲的是大体的过程。要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一层又由许多参数组成。所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要...
阅读(51) 评论(0)

caffe中文件参数设置(六):solver文件

说明:一、在整个caffe框架运行过程中,solver是核心中的核心,它协调着整个模型的运作。caffe程序能否正确运行,和solver文件的参数是否设置正确有着很大的关系。二、在Deep Learning中,往往loss funciton是非凸的,没有解析解,我们需要通过优化方法来求解。solver的作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化l...
阅读(39) 评论(0)

win下编写脚本的方法

其实就是创建一个txt,把代码写到里面,然后把后缀名改成bat,然后保存,然后双击这个xx.bat文件就会自动执行了。...
阅读(52) 评论(0)

win10+caffe+only-cpu试验cifar10

1 cifar10数据集的相关情况60000张32*32彩色图片,50000张训练,10000张测试下载cifar10数据集:http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz将下载好并解压好的数据存放于/data/cifar10/路径下载好的原始数据是BINARY(二进制)格式的,需要转换成LMDB或LEVELDB格式才能被Caffe识别...
阅读(53) 评论(0)

python编译问题1

若出现如下错误:E:\p\venv\Scripts\python.exe E:/p/venv/d.py  File "E:/p/venv/d.py", line 5SyntaxError: Non-ASCII character '\xe7' in file E:/p/venv/d.py on line 5, but no encoding declared; see http://python....
阅读(26) 评论(0)

Python小项目-烤地瓜出现的问题

原来的代码:# coding=UTF-8 class SweetPotato: def __init__(self): self.cookedString="生的" self.cookedLevel=0 self.condiments=[] def __str__(self): return "地瓜状态:%s(%d...
阅读(33) 评论(0)
    个人资料
    • 访问:1290次
    • 积分:255
    • 等级:
    • 排名:千里之外
    • 原创:20篇
    • 转载:11篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档