通过汉诺塔问题理解递归的精髓

递归是许多经典算法的backbone, 是一种常用的高效的编程策略。简单的几行代码就能把一团遭的问题迎刃而解。这篇博客主要通过解决汉诺塔问题来理解递归的精髓。

汉诺塔问题简介:
在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片,1. 一次只移动一片; 2. 不管在哪根针上,小片必在大片上面。当所有的金片都从梵天穿好的那根针上移到另外一概针上时,世界就将在一声霹雳中消灭,梵塔、庙宇和众生都将同归于尽。



我们首先假设要把n个金片从宝针‘A’移动宝针‘B’,还有有另外一根'V'可以借用。
如果n = 1,那么直接从 A->B 即可。
如果n = 2,那么先把A最上面(第一个)金片移动到V,暂且放一下,然后第二个金片移动到B目的地,接着再把V上面的移动到B目的地,所以移动的次序是 A->V,  A->B,  V-B。
如果n = 3,可以这么考虑: 先不看出发地A最下面一个最大的金片,先解决怎么把上面两个移走,方法我们已经知道了,但是移到哪里呢?只有B, V可选,B肯定是不行,因为B是目的地,那么只能是通过B先把两个金片移动到V(A->B, A->V, B->V),然后最下面那个最大的金片移动到目的地B(A->B)。注意这时B上面仅有这个最大的金片,A上面空的,V上面有两个金片。接着把V上面两个金片借由A移动到B(V->A, V->B, A->B)。
如果n = 4, 同样的不考虑最大的一个,先把前三个移动到V,使用上面介绍的移动次序。
以此类推 (其实 n = 2时,也可以看作是先解决最上面一个的问题,然后才是把最下面的金片移动到目的地)
通过分析,发现解决n个金片的方法是先借由B,把n-1个移动到V,然后把A最下面一个移动到B,在然后借由A把V上面n-1移动到B。

用java实现如下
// in java
public class Hanoi{
    private static int count = 0;
    public static void move(char src, char des, int n){
        System.out.println("plate:"+ src +" pillar"+"->"+des+" pillar");
        count++;


    }

    public static void hanoiSolver(char src, char via, char des, int n){
        if (n==1){
            move(src, des, n);
        } else{
            hanoiSolver(src, des, via, n-1);
            move(src, des, n);
            hanoiSolver(via, src, des, n-1);
        }
    }

    public static void main(String[] args) {
        char src = 'A'; //source pillar
        char des = 'B'; //detination pillar
        char via = 'V'; //via pillar
        int n = 3;// the numer of plates
        hanoiSolver(src, via, des, n);
        System.out.println("the total number of moves is "+count);
    }
}


 
仔细分析这个算法,可以学习到:
1. 初中高中大学数学解题中常常用到的归纳总结。一个看似复杂至极的问题,先心里不要慌,初步分析前面几个,看到规律,推而广之。
2. 计算过程中的调用自身函数,形成重入,并因此而把复杂问题化解为相对简单或已经知道答案的小问题。这也不经我想到解数列题的各种方法。(对不起,高中是博主学习数学最认真的时候)
3. 在递归中 必须有明确递归结束条件称递归出口,否则就是死循环啦。如本问题中当n=1时,就是退出递归的时候。

故事中所说的如果成功得把金片移动结束,世界就灰飞烟灭,这是真的吗?我们来小研究下:
假设f(n)为n个盘子要移动的次数。
那么根据上面分析 f(n + 1) = f(n) + 1 +f(n) = 2*f(n)+1
变换为  [f(n + 1) + 1] = 2*[f(n) + 1], 经典等比数列
因为f(1) = 1,所以可得
f(n) = 2^n - 1。
f(64)= 2^64-1,
所以一共要移动 2^64-1次, 假使一秒钟移动一次,不吃不睡觉,一共要移动2.1350398e+14天,584,942,417,355年。

Take-away Tip:
递归Recursive 就是在程序中调用自身,形成重入,把复杂问题层层简化成一个已然解决的问题,
并在一定条件下退出递归。


  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
汉诺塔问题是一个经典的递归问题,目的是将一堆盘子从一个柱子移动到另一个柱子,并且在移动过程中要遵守以下规则: 1. 每次只能移动一个盘子。 2. 盘子只能放在比自己大的盘子上面。 3. 可以使用辅助柱子来中转盘子。 递归是解决汉诺塔问题的常用方法。我们可以使用递归函数来定义移动盘子的步骤。下面是一个示例的代码实现: 引用中的代码展示了一个使用递归函数的汉诺塔解决方案。该解决方案使用了4个参数,分别是盘子的数量n,起始柱src,中转柱medium和目标柱dest。当n等于1时,我们只需要将盘子从起始柱移动到目标柱即可。否则,我们需要将n-1个盘子从起始柱通过目标柱中转到中转柱,然后将最后一个盘子从起始柱移动到目标柱,最后再将n-1个盘子从中转柱通过起始柱移动到目标柱。 引用中的代码也展示了一个递归实现的汉诺塔问题解决方案。该代码中使用了三个参数,分别是盘子的数量m,起始柱from,目标柱to和辅助柱help。当m等于1时,我们只需要将盘子从起始柱移动到目标柱即可。否则,我们需要将前m-1个盘子从起始柱通过辅助柱移动到目标柱,然后将第m个盘子从起始柱移动到目标柱,最后再将前m-1个盘子从辅助柱通过目标柱移动到起始柱。 至于引用中的内容,它似乎是一个个人总结和笔记,与汉诺塔问题的解决方法无关。 总结来说,使用递归是解决汉诺塔问题的常用方法。通过递归函数,我们可以将大问题分解为小问题,从而简化解决方案。每次递归调用都遵循相同的规则,直到达到基本情况,即只有一个盘子需要移动。通过不断重复这个过程,我们可以将所有的盘子都按照规定移动到目标柱子上。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值