Codeforces 392C Yet Another Number Sequence(矩阵快速幂)

博客介绍了如何使用矩阵快速幂方法解决Codeforces 392C题目的数列求和问题。题目要求计算序列A[i]=i^k*F[i]的前n项和,其中F[i]是斐波那契数列。通过分析(i+1)^k的展开式,推导出u(n+1,k)和v(n+1,k)的递推关系,并利用这些关系进行求解。" 126281136,7300439,Windows上MySQL 8.0.30的完整安装与5.7卸载指南,"['数据库', 'MySQL', 'Windows', '安装教程']
摘要由CSDN通过智能技术生成

题目链接:Codeforces 392C Yet Another Number Sequence


题目大意:给出n和k,表示一个序列A[i],求前n项A[i]的和,结果可以% 1e9+7。

A[i] = i^k * F[i],F[i] = F[i-1] + F[i-2](斐波那契数列)。


解题思路:首先(i+1)^k = C(k,k) * i ^ k + C(k, k-1) * i ^ (k-1) ......... + C(k, 0) * i ^ 0.

那么定义u(n+1,k) = (n+1) ^ k * F(n+1), v(n+1, k) = (n+1) ^ k * F(n).


u(n+1, k) = (n+1)^k * F(n+1) = (n+1)^k * F(n) + (n+1)^k * F(n-1)

= ∑[1,k] C(k, i) * n^i * F(n) + ∑[1,k] C(k,i) * n^i * F(n-1) = ∑[1,k] C(k,i) * u(n, i) + ∑[1,k] C(k,i) * v(n, i);

v(n+1, k) = (n+1)^k * F(n) = ∑[1,k] C(k, i) * n^i * F(n) = ∑[1,k] C(k, i) * u(n, i);

s[n] = s[n-1] + u(n, k);


#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>

using namespace std;
typedef long long ll;
const int N = 90;
const int M = 50;
const ll mod = 1e9+7;

struct mat {
	ll a[N][N];
	mat() { memset(a, 0, sizeof(a)); }
};

int n, k;
ll s, c[M][M];

void init () {
	cin >> s >> k;
	n = k * 2 + 3;
	for (int i = 0; i <= k; i++) {
		c[i][0] = c[i][i] = 1;;
		for (int j = 1; j < i; j++)
			c[i][j] = c[i-1][j-1] + c[i-1][j];
	}
}

mat mul(mat p, mat q) {
	mat ans;
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++) {
			
			for (int t = 0; t < n; t++) {
				ans.a[i][j] += p.a[i][t]*q.a[t][j];
				ans.a[i][j] %= mod;
			}
		}
	}
	return ans;
}

mat Qpow(mat base, ll t) {
	mat x;
	for (int i = 0; i < n; i++) x.a[i][i] = 1;

	while (t) {
		if (t&1) x = mul(x, base);
		base = mul(base, base);
		t /= 2;
	}
	return x;
}

int main () {
	init();
	mat base;
	for (int i = 0; i <= k; i++) {
		for (int j = 0; j <= i; j++) {
			base.a[i][j] = base.a[i+k+1][j] = base.a[i][j+k+1] = c[i][j];
		}
	}
	base.a[2*k+2][k] = base.a[2*k+2][2*k+2] = 1;

	mat ans = Qpow(base, s);
	ll g = 0;
	for (int i = 0; i < 2*k+2; i++) {
		g = (g + ans.a[2*k+2][i]) % mod;
	}
	cout << g << endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值