题目链接:Codeforces 392C Yet Another Number Sequence
题目大意:给出n和k,表示一个序列A[i],求前n项A[i]的和,结果可以% 1e9+7。
A[i] = i^k * F[i],F[i] = F[i-1] + F[i-2](斐波那契数列)。
解题思路:首先(i+1)^k = C(k,k) * i ^ k + C(k, k-1) * i ^ (k-1) ......... + C(k, 0) * i ^ 0.
那么定义u(n+1,k) = (n+1) ^ k * F(n+1), v(n+1, k) = (n+1) ^ k * F(n).
u(n+1, k) = (n+1)^k * F(n+1) = (n+1)^k * F(n) + (n+1)^k * F(n-1)
= ∑[1,k] C(k, i) * n^i * F(n) + ∑[1,k] C(k,i) * n^i * F(n-1) = ∑[1,k] C(k,i) * u(n, i) + ∑[1,k] C(k,i) * v(n, i);
v(n+1, k) = (n+1)^k * F(n) = ∑[1,k] C(k, i) * n^i * F(n) = ∑[1,k] C(k, i) * u(n, i);
s[n] = s[n-1] + u(n, k);
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long ll;
const int N = 90;
const int M = 50;
const ll mod = 1e9+7;
struct mat {
ll a[N][N];
mat() { memset(a, 0, sizeof(a)); }
};
int n, k;
ll s, c[M][M];
void init () {
cin >> s >> k;
n = k * 2 + 3;
for (int i = 0; i <= k; i++) {
c[i][0] = c[i][i] = 1;;
for (int j = 1; j < i; j++)
c[i][j] = c[i-1][j-1] + c[i-1][j];
}
}
mat mul(mat p, mat q) {
mat ans;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int t = 0; t < n; t++) {
ans.a[i][j] += p.a[i][t]*q.a[t][j];
ans.a[i][j] %= mod;
}
}
}
return ans;
}
mat Qpow(mat base, ll t) {
mat x;
for (int i = 0; i < n; i++) x.a[i][i] = 1;
while (t) {
if (t&1) x = mul(x, base);
base = mul(base, base);
t /= 2;
}
return x;
}
int main () {
init();
mat base;
for (int i = 0; i <= k; i++) {
for (int j = 0; j <= i; j++) {
base.a[i][j] = base.a[i+k+1][j] = base.a[i][j+k+1] = c[i][j];
}
}
base.a[2*k+2][k] = base.a[2*k+2][2*k+2] = 1;
mat ans = Qpow(base, s);
ll g = 0;
for (int i = 0; i < 2*k+2; i++) {
g = (g + ans.a[2*k+2][i]) % mod;
}
cout << g << endl;
return 0;
}