uva 1541 - To Bet or Not To Bet(记忆化+概率)

737 篇文章 0 订阅
202 篇文章 0 订阅

题目链接:uva 1541 - To Bet or Not To Bet

题目大意:在一个棋盘上进行游戏,给定棋盘长度m,不算起始和终止,以及走的步数t。从起点开始,每轮可以丢一枚硬币,正面移动2步,方面移动1步;中间的格子有写操作,包括移动一定步数,停止一次操作。问说在t步内到达终点的概率。

解题思路:dp[i][j]表示走到第i格用掉j步的概率,然后记忆化搜索,因为保证状态重复,并且可以确定递归终止条件。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>

using namespace std;
const int maxn = 100;

bool lose[maxn], vis[maxn][maxn];
double p[maxn][maxn];
int N, T, inst[maxn];

void init () {
    char str[maxn];
    memset(inst, 0, sizeof(inst));
    memset(vis, false, sizeof(vis));
    memset(lose, false, sizeof(lose));

    scanf("%d%d", &N, &T);
    for (int i = 1; i <= N; i++) {
        scanf("%s", str);
        if (str[0] == 'L')
            lose[i] = true;
        else
            sscanf(str, "%d", &inst[i]);
    }
}

double dfs (int d, int k) {

    if (vis[d][k])
        return p[d][k];

    vis[d][k] = true;

    if (d == N + 1)
        return p[d][k] = 1;

    if (k <= 0)
        return p[d][k] = 0;

    double& ret = p[d][k];
    ret = 0;

    int next = d + 1;
    if (lose[next])
        ret += 0.5 * dfs(next, k-2);
    else
        ret += 0.5 * dfs(next + inst[next], k - 1);

    next = min(d + 2, N + 1);
    if (lose[next])
        ret += 0.5 * dfs(next, k-2);
    else
        ret += 0.5 * dfs(next + inst[next], k - 1);

    return ret;
}

int main () {
    int cas;
    scanf("%d", &cas);
    while (cas--) {
        init();
        double ans = dfs(0, T);
        if (fabs(ans - 0.5) < 1e-9)
            printf("Push. 0.5000\n");
        else if (ans > 0.5)
            printf("Bet for. %.4lf\n", ans);
        else
            printf("Bet against. %.4lf\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值