1.算法简介
kNN的思想很简单:计算待分类的数据点与训练集所有样本点,取距离最近的k个样本;统计这k个样本的类别数量;根据多数表决方案,取数量最多的那一类作为待测样本的类别。距离度量可采用Euclidean distance,Manhattan distance和cosine。
用Iris数据集作为测试,代码参考[1]
import numpy as np
import scipy.spatial.distance as ssd
def read_data(fn):
""" read d
本文介绍了k近邻(kNN)算法的基本思想,包括使用Euclidean distance等距离度量方法,以及通过多数表决确定分类的策略。文章还提到了使用Iris数据集进行的kNN分类测试。
订阅专栏 解锁全文
1318





