[树链剖分+MST] CF609E. Minimum spanning tree for each edge

原创 2015年12月20日 19:10:53

题目链接:Minimum spanning tree for each edge

题意:给一个无向图,n个点,m条边,对任意边edge[i],求出包含有边edge[i]的最小生成树。

做法:考虑MST的性质,对任意两点u,v一定有且只有一条路径,当边[u,v]不是MST边的时候,加入边[u,v]便会形成环,于是在u到v的路径上找一条权值最大的边删去再加入边[u,v],之前环上的任意两点仍然连通。

u到v路径的最大值用树链剖分维护,LCA大概也可以,不过做的时候顺便套了树剖的板子。

最开始求一次原始的MST,建立树剖后,就可以很方便地求出每个边的答案啦。

#include<bits/stdc++.h>
#define ll long long int
using namespace std;
const int N = 200005;
struct eg{
    int u, v, nex, val, id;
    eg(){}
    eg(int _u, int _v, int _val, int _nex) { u = _u, v = _v, val = _val, nex = _nex; }
    bool operator < (eg a) const{
        return val < a.val;
    }
}edg[N<<2], MST[N];
ll ans[N] = {0};
int sav[N][3], scnt;
int fir[N], ecnt, root;
int n, m;
void add(int u, int v, int val){
    edg[ecnt] = eg(u, v, val, fir[u]);
    fir[u] = ecnt++;
    edg[ecnt] = eg(v, u, val, fir[v]);
    fir[v] = ecnt++;
}

////////////////////////////////////////////////////树链剖分
int fa[N], dep[N], siz[N], son[N];
int tree[N<<2];
void dfs(int rt){
    siz[rt] = 1, son[rt] = 0;
    for(int k = fir[rt]; k != -1; k = edg[k].nex){
        if(edg[k].v != fa[rt]){
            fa[edg[k].v] = rt;
            dep[edg[k].v] = dep[rt] + 1;
            dfs(edg[k].v);
            if(siz[edg[k].v] > siz[son[rt]]) son[rt] = edg[k].v;
            siz[rt] += siz[edg[k].v];
        }
    }
}
int w[N], top[N],  cnt; //w[]为到线段树的映射
void dfs2(int rt, int tp){
    w[rt] = ++cnt; top[rt] = tp;
    if(son[rt]) dfs2(son[rt], top[rt]);
    for(int k = fir[rt]; k != -1; k = edg[k].nex){
        if(edg[k].v != son[rt] && edg[k].v != fa[rt]){ 
            dfs2(edg[k].v, edg[k].v);
        }
    }
}
void update(int rt, int l, int r, int pos, int val){
    if(l == r){
        tree[rt] = val;
        return;
    }
    int mid = (l+r) >> 1;
    if(pos <= mid) update(rt<<1, l, mid, pos, val);
    else update(rt<<1|1, mid+1, r, pos, val);
    tree[rt] = max(tree[rt<<1], tree[rt<<1|1]);
}
void init(){
    memset(siz, 0, sizeof(siz));
    memset(tree, 0, sizeof(tree));
    root = (n+1)/2;
    fa[root] = cnt = dep[root] = 0;
    dfs(root);
    dfs2(root, root);
    for(int i = 1; i <= scnt; ++i){
        if(dep[sav[i][0]] > dep[sav[i][1]]) swap(sav[i][0], sav[i][1]);
        update(1, 1, cnt, w[sav[i][1]], sav[i][2]);
    }
}
int maxi(int rt, int l, int r, int ql, int qr){
    if( ql > r || qr < l) return 0;
    if(ql <= l && qr >= r) return tree[rt];
    int mid = (l+r) >> 1;
    return max(maxi(rt<<1, l, mid, ql, qr), maxi(rt<<1|1, mid+1, r, ql, qr));
}
int Treemax(int va, int vb){
    int f1 = top[va], f2 = top[vb], tmp = 0;
    while(f1 != f2){
        if(dep[f1] < dep[f2]){
            swap(f1, f2);
            swap(va, vb);
        }
        tmp = max(tmp, maxi(1, 1, cnt, w[f1], w[va]));
        va = fa[f1], f1 = top[va];
    }
    if(va == vb) return tmp;
    if(dep[va] > dep[vb]) swap(va, vb);
    return max(tmp, maxi(1, 1, cnt, w[son[va]], w[vb]));
}
///////////////////////////////////////////////////////

//////////////////////////////////////////////////////并查集
int seed[N];
int find(int x){
    return seed[x] < 0? x : seed[x] = find(seed[x]);
}
int join(int a, int b){
    a = find(a), b = find(b);
    if(a == b) return 0;
    if(seed[a] > seed[b]) seed[b] += seed[a], seed[a] = b;
    else seed[a] += seed[b], seed[b] = a;
    return 1;
}
/////////////////////////////////////////////////////

int main(){
    memset(seed, -1, sizeof(seed));
    memset(fir, -1, sizeof(fir));
    ecnt = scnt = 0;

    scanf("%d %d", &n, &m);
    for(int i = 0; i < m; ++i){
        scanf("%d %d %d", &MST[i].u, &MST[i].v, &MST[i].val);
        MST[i].id = i+1;
    }
    /////////////Kruskal求MST
    sort(MST, MST+m);
    for(int i = 0; i < m; ++i){
        if(join(MST[i].u, MST[i].v)) {
            ans[0] += MST[i].val;
            //用MST里的边做树链剖分
            add(MST[i].u, MST[i].v, MST[i].val);
            sav[++scnt][0] = MST[i].u, sav[scnt][1] = MST[i].v, sav[scnt][2] = MST[i].val;
        }
    }
    //////////////

    //树链剖分go
    init();
    ////////////

    //然后就可以求解啦
    for(int i = 0; i < m; ++i) ans[MST[i].id] = ans[0] + MST[i].val - Treemax(MST[i].u, MST[i].v);
    for(int i = 1; i <= m; ++i) printf("%lld\n", ans[i]);
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

MST(Kruskal’s Minimum Spanning Tree Algorithm)

You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning...
  • zhengnanlee
  • zhengnanlee
  • 2013年07月09日 09:15
  • 1998

让我们来谈谈最小生成树(Minimum Spanning Tree)算法

现实生活中我们往往会遇到类似于旅游路线规划,使用怎么样的一条旅游路线能够让我们花费最少的旅费获得一样的感受。这时如果你学过算法的话,恭喜你可以在女票面前大显生手了。这其实是一个最小生成树问题,可以利用...
  • shaya118
  • shaya118
  • 2014年12月24日 21:34
  • 2237

最小生成树(MST,minimum spanning tree)

生成树:由图生成的树,由图转化为树,进一步可用对树的相关操作来对图进行操作。最小指的是权值最小;生成树是边的集合,如下图所示的最小生成树:MST={{a,b},{a,f},{f,c}}\text{MS...
  • lanchunhui
  • lanchunhui
  • 2016年09月02日 08:12
  • 595

说说最小生成树(Minimum Spanning Tree)

minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点、无环、路径的权重和为所有路径中最小的. graph-cut 对图的一个...
  • gsky1986
  • gsky1986
  • 2015年04月20日 14:24
  • 2433

Prim's Minimal Spanning Tree_Prim(最小生成树的Prim算法)

题目: 最小生成树是什么? 在图的一堆点(假设有V个)中,有些两点之间有边,有些两点之间没有边。对于两点之间的边,权重有大有小,目标是找到一些边,使得图是联通的并且这些边的和最小。 算法: 贪心。 ...
  • feliciafay
  • feliciafay
  • 2014年02月13日 08:56
  • 1675

最小生成树(Minimum Spanning Tree)(Prim算法)

1. 什么是最小生成树(Minimum Spanning Tree) 2. 贪心算法: 1) 什么是“贪”:每一步都要最好的 2) 什么是“好”:权重最小的边 3) 需要约束:      a) 只...
  • u013354805
  • u013354805
  • 2016年04月05日 11:21
  • 501

Kruskal算法求MST(最小生成树)

Kruskal算法求最小生成树使用的图的存储结构是图的边表存储结构 #include #include #define MAX_VERTAX_SIZE 20 #define MAX_EAGE_SI...
  • robin_Xu_shuai
  • robin_Xu_shuai
  • 2016年03月13日 15:41
  • 500

The minimum spanning tree of a graph(图的最小生成树)

Q: minimum spanning tree 的定义 A: 给定一幅图G = (V,E), 找到E的一个能够连接起G中所有的节点(vertices)的边子集T, 并且边子集的权重之和最小, 这就是...
  • a130737
  • a130737
  • 2014年08月08日 13:32
  • 807

HDOJ 题目4408 Minimum Spanning Tree(Kruskal+Matrix_Tree)

Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O...
  • yu_ch_sh
  • yu_ch_sh
  • 2015年08月12日 20:47
  • 547

Codeforces 609E Minimum spanning tree for each edge【MST + LCA倍增】

E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 m...
  • chenzhenyu123456
  • chenzhenyu123456
  • 2015年12月30日 16:59
  • 320
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[树链剖分+MST] CF609E. Minimum spanning tree for each edge
举报原因:
原因补充:

(最多只允许输入30个字)