关闭

[组合数+bell数] codeforces 569D. Symmetric and Transitive

标签: codeforces组合数学
242人阅读 评论(0) 收藏 举报
分类:

D. Symmetric and Transitive
题意:
一个集合Sn个元素,问它上面的二元关系的数量,要求二元关系满足对称性和传递性,不满足自反性。
题解:
学过离散应该知道,二元关系就是笛卡尔积S×S的子集。
开下脑洞可以想象一个n节点的有向完全图,并且对任意节点我们加上一个自环,任意边的组合就是一个关系,可以看出只要一个关系包含了所有自环,那么这个关系就有自反性。
再想想的话,假如(1,2)(2,1)满足关系P,那么如果不满足关系(1,1)(2,2)的话,那就不满足传递性了,因为根据传递性的定义,1P22P11P1,所以假如我们没有包含x的自环,那么任意x的边都不应该包含。
现在问题就变成了一个n个节点的有向完全图(加入自环),任选k(k>=1)个点去掉,剩下的图中边的任意合法组合(满足自反和对称和传递,满足自反是因为已将不满足的先选出来了),回到集合的角度看,满足自反对称传递就是等价关系,也就是算出去掉k(k>=1)个元素后集合的等价关系的个数,这就是贝尔数了。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 4005;
const ll mod = 1e9+7;
ll C[N][N], bell[N][N];
void cm(ll& x){ if(x >= mod) x -= mod; }
void init(){
    for(int i = 0; i < N; ++i){
        C[i][0] = 1;
        for(int j = 1; j <= i; ++j){
            C[i][j] = C[i-1][j-1] + C[i-1][j];
            cm(C[i][j]);
        }
    }
    bell[1][1] = 1;
    for(int i = 2; i < N; ++i){
        bell[i][1] = bell[i-1][i-1];
        for(int j = 2; j <= i; ++j){
            bell[i][j] = bell[i][j-1]+bell[i-1][j-1];
            cm(bell[i][j]);
        }
    }
}
int main(){
    init();
    ll ans = 0, n;
    cin >> n;
    for(int i = 1; i <= n; ++i){
        ans += C[n][i]*bell[n-i][n-i]%mod;
        cm(ans);
    }
    cout << ans << endl;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:31783次
    • 积分:1055
    • 等级:
    • 排名:千里之外
    • 原创:77篇
    • 转载:0篇
    • 译文:0篇
    • 评论:9条
    文章分类
    最新评论