pku 3378(树状数组实现)

原创 2007年09月13日 22:06:00

pku 3378树状数组解法:

看到题目,我们首先应该想到的是求:在一个数组里前n-1个数有多少个比第n个数小。
对于这个问题,我先将这个数组离散化---就是得到第n个数是第几大(或小)的数,然后建立树状
数组,s[i]为第i大的数前面的所有的数的个数(包括第i大的数),这样说或许不好理解,但是,
我解释一下以下的语句就简单多了:(前提是你已经对树状数组有所了解)

 for(int i=1;i<=N;i++){ 此条语句就是对每一个数进行统计(排序前)
  increase(status[i],1); 如果统计到k,则前k-1个数的分别应该在s中的位置就已经
     确定了,故:
  ans[i] = sum(status[i]-1); 答案就是,比当前数在整个数组中的位置小一的和即s[status[i]-1];
 }

有了以上一个题目作基础,再看次题目是不是有一些眉目了,对了,求三元应该在二元的基础上,以此类推便可以得到五元的
数目了,解释:
 因为每一个数在整个数组中的相对位置是不变的,说以比方说对于数组 4 5 6 1 2 3 7 8,对于6有两个数4和5可以同
 6组成二元组,如果按照统计二元组的方法统计三元组,那么循环统计到7的时候,其前面必然可以找到6,而此时对于
 7,其总量就应该增加在二元组结果中6的答案数,同样应该增加5(1)、3(2)、2(1)的答案数即7的三元组答案是
 1+2+1+2 = 6.以此类推可的到最终答案,不在赘述。
显然使用树状数组的时间复杂度为O(nlgn)


参考程序:(注意要用高精度实现加法)
programme:pku 3378

#include<iostream>
#include<algorithm>

using namespace std;

#define BUFSIZE 60000

#define INT __int64

struct Num{
 int id;
 int key;
};

Num table[BUFSIZE];
int status[BUFSIZE];

int N;

INT S[BUFSIZE];
INT ans[BUFSIZE];
INT temp[BUFSIZE];

struct hp{
 int s[30];
 int n;
};

hp Shp[BUFSIZE];
hp anshp[BUFSIZE];
hp temphp[BUFSIZE];

bool comp(Num a,Num b)
{
 return a.key<b.key;
}

int init()

 for(int i=1;i<=N;i++){
  scanf("%d",&table[i].key);
  table[i].id = i;
 }
 
 sort(table+1,table+N+1,comp);

 int t = 0,p = -1;

 for(int i=1;i<=N;i++){
  
  if(table[i].key>p){
   t++;  
   p = table[i].key;
  }  
  
  status[table[i].id] = t;
 }
}

int lowbit(int x)
{
 return x&(x^(x-1));
}

void increase(int n,INT v)
{
 for(int i=n;i<=N;i+=lowbit(i))
  S[i] += v;
}
  
INT sum(int n)
{
 INT t = 0;
 
 for(int i=n;i>0;i-=lowbit(i))
  t += S[i];
  
 return t;
}   

void add(hp &a,hp b)
{
 int c = 0;
 if(a.n>b.n){
  for(int j=0;j<b.n;j++){
   a.s[j] += c+b.s[j];
   c = a.s[j]/10;
   a.s[j] %= 10;
  }
  for(int j=b.n;j<a.n;j++){
   a.s[j] += c;
   c = a.s[j]/10;
   a.s[j] %= 10;
  }
  if(c>0){
   a.s[a.n] = c;
   a.n++;
  }
 }else {
  for(int j=0;j<a.n;j++){
   a.s[j] += c+b.s[j];
   c = a.s[j]/10;
   a.s[j] %= 10;
  }
  for(int j=a.n;j<b.n;j++){
   a.s[j] = c+b.s[j];
   c = a.s[j]/10;
   a.s[j] %= 10; 
  }
  if(c>0){
   a.s[b.n] = c;
   a.n = b.n+1;
  }else
   a.n = b.n;       
 }
}

void increasehp(int n,hp v)
{
 for(int i=n;i<=N;i+=lowbit(i))
  add(Shp[i],v);
}
   
  
void sumhp(int n,hp &t)
{
 t.n = 1;
 t.s[0] = 0;
  
 for(int i=n;i>0;i-=lowbit(i))
  add(t,Shp[i]);
}   

void copy(hp &a, hp b)
{
 a.n = b.n;
 for(int i=0;i<b.n;i++)
  a.s[i] = b.s[i];
}
   
int main()

 while(scanf("%d",&N)!=EOF){
  
  init();
 
  fill_n(temp,N+1,1);

  for(int k=1;k<3;k++){ 
  
   fill_n(S,N+1,0);
  
   for(int i=1;i<=N;i++){
    increase(status[i],temp[i]);
    ans[i] = sum(status[i]-1);
   }
   for(int i=1;i<=N;i++)
    temp[i] = ans[i];
  }
  
  for(int i=1;i<=N;i++){
   temphp[i].n = 0;
   while(ans[i]!=0){
    temphp[i].s[temphp[i].n++] = ans[i]%10;
    ans[i] /= 10;
   }
  }
     
  for(int k=1;k<3;k++){
   
   for(int i=1;i<=N;i++)
    Shp[i].n = 1,Shp[i].s[0] = 0; 
    
   for(int i=1;i<=N;i++){
    increasehp(status[i],temphp[i]);
    sumhp(status[i]-1,anshp[i]);
   }       
   for(int i=1;i<=N;i++)
    copy(temphp[i],anshp[i]);
  }
  
  hp sum;
  sum.n = 1,sum.s[0] = 0;
  
  for(int i=1;i<=N;i++)
   add(sum,anshp[i]);       

  for(int i=sum.n-1;i>=0;i--)
   printf("%d",sum.s[i]);
  printf("/n");
 }
 return 0;
}

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

poj3378 Crazy Thairs 高精度,树状数组

poj3378 Crazy Thairs 高精度,树状数组 为了比赛,准备整理一套高精模板。 虽然赵老师会Java,但是这玩意总是莫名不靠谱。 本题,给一个有序集合,问原序满足从小到大而且值...

POJ 3378 Crazy Thairs(数据集中+DP+树状数组+高精度)

POJ3378 Crazy Thairs(数据集中+DP+树状数组+高精度) 分析:由于数据值大量不大,所以读入所有的数并对数值从新映射到[1,5000]. 令d[x][i]=y表示在序列中以值x结尾...

Crazy Thairs_poj3378_DP+离散+高精度+树状数组

Description These days, Sempr is crazed on one problemnamed Crazy Thair. Given N (1 ≤ N ≤ 50000)numb...

poj 3378 Crazy Thairs 树状数组+高精度+dp

题意: 给一个长为n的序列,求里面长度为5的上升子序列有多少个。 分析: 树状数组c[i][j]表示以i结尾长度为j的序列数量,要用高精度。 代码: //poj 3378 //sep9 #i...

POJ3378:Crazy Thairs(动态规划+线段树或树状数组+离散化+高精度)

Crazy Thairs Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 6092   Accepted: 147...

pku3321树状数组

发现近段时间光遇到树状数组啊。。。 http://poj.org/problem?id=3321 给定一棵树,其根节点始终为1,各节点值最开始均为1,然后有两种操作,一是查询该节点下面的节...

Pku2352 Stars 树状数组

Stars Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22795   Accepte...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)