关闭

椭圆曲线密码算法介绍

标签: 算法加密
1688人阅读 评论(0) 收藏 举报
分类:
椭圆曲线密码算法介绍 
  
  1,有限域上的椭圆曲线 
  设K表示一个有限域,E是域K上的椭圆曲线,则E是一个点的集合: 
  E/K = { ( x, y ) | y2+ a1xy + a3y = x3 + a2x2 + a4x + a6, 
  a1, a3, a2, a4, a6 x, y K } { O } 
  其中O表示无穷远点。 
  在E上定义‘+’运算,P + Q = R,R是过P、Q的直线与曲线的另一交点关于x轴的对称点,当P = Q时R是P点的切线与曲线的另一交点关于x轴的对称点。这样,( E, + )构成可换群( Abel群),O是加法单位元(零元)。椭圆曲线离散对数问题ECDLP定义如下:给定定义在K上的椭圆曲线E,一个n阶的点P E/K,和点Q E/ K,如果存在l,确定整数l, 0 l n - 1, Q = lP。前面已经提到,ECDLP是比因子分解难得多的问题。 
  椭圆曲线上的加法: P + Q = R 
  椭圆曲线上一点的2倍: P + P = R. 
  2,椭圆曲线上的密码算法 
  基于该难题,Neal Koblitz[13] 和Victor Miller[14]在1985年分别利用有限域上椭圆曲线的点构成的群实现了离散对数密码算法,其中被广泛接受的是椭圆曲线上的DSA,称ECDSA。随即展开了椭圆曲线密码学研究,除椭圆曲线外,还有人提出在其它类型的曲线如超椭圆曲线上实现公钥密码算法。 
  此后,有人在椭圆曲线上实现了类似ElGamal的加密算法,以及可恢复明文的数字签名方案。除有限域上的椭圆曲线密码算法外,人们还探索了在椭圆曲线上实现RSA算法,如KMOV等,笔者也设计了一种算法(“一种基于Z/nZ上椭圆曲线的公钥密码算法”,王汉强、魏庆福,通信学报,1999,第7期)。 
  3,椭圆曲线密码算法的发展 
  由于其自身优点,椭圆曲线密码学一出现便受到关注。现在密码学界普遍认为它将替代RSA成为通用的公钥密码算法,SET( Secure Electronic Transactions )协议的制定者已把它作为下一代SET协议中缺省的公钥密码算法,目前已成为研究的热点,是很有前途的研究方向。 
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:27192次
    • 积分:302
    • 等级:
    • 排名:千里之外
    • 原创:0篇
    • 转载:24篇
    • 译文:0篇
    • 评论:0条
    技术博客