POJ 1659 - Frogs' Neighborhood , Havel_Hakimi 定理

原创 2013年12月02日 23:49:35

    题意:

                        给了一个无向图每个点的度..问是否存在符合条件的简单图(无重边无自环)..输出任意一个符合条件的或者输出不存在..

                题解:

      Havel_Hakimi 定理模板题

                        这个定理就是解决给了无向图每个点的度..求无向图是否存在的..以贪心为核心的算法..做法是每次将所有点按照度从大到小排序..然后删去第一个(度最大的)..接下来的D(度最大点的度)个度都-1..代表这些边和刚才拿出来的点做边..然后重新排序..继续做..要么做的过程中出现了某个点的度为-1...说明不存在..要么每个点都可以做完..找出了一个解..

 

Program:

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
#include<cmath>
#define oo 1<<30
#define MAXN 1001
using namespace std; 
struct node
{
      int id,w;
}h,D[11];
int Arc[11][11];
bool cmp(node a,node b)
{
      return a.w>b.w;
}
bool judge(int n)
{
      int i;
      memset(Arc,0,sizeof(Arc));
      while (n)
      {
              sort(D+1,D+1+n,cmp);
              h=D[1],n--;
              for (i=1;i<=n;i++) D[i]=D[i+1]; 
              if (h.w>n) return false;
              for (i=1;i<=h.w;i++) 
                   D[i].w--,
                   Arc[D[i].id][h.id]=Arc[h.id][D[i].id]=1;
              for (i=1;i<=n;i++) 
                 if (D[i].w==-1) return false;
              while (n && !D[n].w) n--; 
      }
      return true;
}
int main()
{
      int C,cases,N,i,j; 
      scanf("%d",&C);
      for (cases=1;cases<=C;cases++)
      {
               scanf("%d",&N);
               for (i=1;i<=N;i++) scanf("%d",&D[i].w),D[i].id=i;
               if (judge(N)) 
               {
                        puts("YES");
                        for (i=1;i<=N;i++)
                        {
                               for (j=1;j<=N;j++) printf("%d ",Arc[i][j]);
                               puts("");
                        }
               }else
                        puts("NO");
               if (cases!=C) puts("");
      }
      return 0;
} 


版权声明:本文为博主原创文章,未经博主允许不得转载。

poj1659 - Frogs' Neighborhood (利用Havel-Hakimi定理判断一个序列是否是可图的)

Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 759...

poj1659 Frogs' Neighborhood (Havel-Hakimi定理可图化判定)

Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 8667   Accept...

POJ 1659 Frogs' Neighborhood Havel-Hakimi定理

U Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊Li和Lj之间有水路相连,...

POJ 1659 Frogs' Neighborhood (Havel-Hakimi 定理)图论

链接:http://poj.org/problem?id=1659 Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一...

POJ 1659 Frogs' Neighborhood (Havel-Hakimi定理 + 贪心)

原题链接 一、题目描述 Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊...

POJ--1659--Frogs' Neighborhood【Havel-Hakimi定理构图】

链接:http://poj.org/problem?id=1659 题意:有n个湖泊,如果湖泊A和湖泊B之间有水路连接,则称他们互为邻居,现给出n个湖泊的邻居个数,如果他们可以构成一个图则输出YES和...
  • zzzz40
  • zzzz40
  • 2014年07月26日 14:49
  • 661

POJ1659 Frogs' Neighborhood(Havel-Hakimi 定理,判断序列可图)

度序列(degree sequence):若把图 G所有顶点的度数排成一个序列 s,则称 s为图 G的度序 列。 序列是可图的(graphic):一个非负整数组成的有限序列如果是某个无向图的度序列,...

poj1659 Frogs' Neighborhood(Havel-Hakimi定理)

Frogs' NeighborhoodTime Limit: 5000MS Memory Limit: 10000KTotal Submissions: 3471 Accepted: 1478 Spe...

POJ 1659-Frogs' Neighborhood(Havel-Hakimi定理-度序列构图)

Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 928...
  • MIKASA3
  • MIKASA3
  • 2016年07月28日 18:44
  • 198

【Havel-Hakimi定理】PKU-1659-Frogs' Neighborhood

1,Havel-Hakimi定理主要用来判定一个给定的序列是否是可图的。 2,首先介绍一下度序列:若把图 G 所有顶点的度数排成一个序列 S,则称 S 为图 G 的度序列。 3,一个非负整数组成的...
  • AndRing
  • AndRing
  • 2012年03月22日 09:36
  • 412
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1659 - Frogs' Neighborhood , Havel_Hakimi 定理
举报原因:
原因补充:

(最多只允许输入30个字)