关闭

POJ 1659 - Frogs' Neighborhood , Havel_Hakimi 定理

636人阅读 评论(0) 收藏 举报
分类:

    题意:

                        给了一个无向图每个点的度..问是否存在符合条件的简单图(无重边无自环)..输出任意一个符合条件的或者输出不存在..

                题解:

      Havel_Hakimi 定理模板题

                        这个定理就是解决给了无向图每个点的度..求无向图是否存在的..以贪心为核心的算法..做法是每次将所有点按照度从大到小排序..然后删去第一个(度最大的)..接下来的D(度最大点的度)个度都-1..代表这些边和刚才拿出来的点做边..然后重新排序..继续做..要么做的过程中出现了某个点的度为-1...说明不存在..要么每个点都可以做完..找出了一个解..

 

Program:

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
#include<cmath>
#define oo 1<<30
#define MAXN 1001
using namespace std; 
struct node
{
      int id,w;
}h,D[11];
int Arc[11][11];
bool cmp(node a,node b)
{
      return a.w>b.w;
}
bool judge(int n)
{
      int i;
      memset(Arc,0,sizeof(Arc));
      while (n)
      {
              sort(D+1,D+1+n,cmp);
              h=D[1],n--;
              for (i=1;i<=n;i++) D[i]=D[i+1]; 
              if (h.w>n) return false;
              for (i=1;i<=h.w;i++) 
                   D[i].w--,
                   Arc[D[i].id][h.id]=Arc[h.id][D[i].id]=1;
              for (i=1;i<=n;i++) 
                 if (D[i].w==-1) return false;
              while (n && !D[n].w) n--; 
      }
      return true;
}
int main()
{
      int C,cases,N,i,j; 
      scanf("%d",&C);
      for (cases=1;cases<=C;cases++)
      {
               scanf("%d",&N);
               for (i=1;i<=N;i++) scanf("%d",&D[i].w),D[i].id=i;
               if (judge(N)) 
               {
                        puts("YES");
                        for (i=1;i<=N;i++)
                        {
                               for (j=1;j<=N;j++) printf("%d ",Arc[i][j]);
                               puts("");
                        }
               }else
                        puts("NO");
               if (cases!=C) puts("");
      }
      return 0;
} 


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:687189次
    • 积分:12276
    • 等级:
    • 排名:第1169名
    • 原创:620篇
    • 转载:3篇
    • 译文:0篇
    • 评论:178条
    最新评论