找质因数..打素数表..DFS解容斥问题...

原创 2012年03月21日 20:44:22

Co-prime

Description

Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
 

Input

The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).
 

Output

For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
 

Sample Input

2
1 10 2
3 15 5
 

Sample Output

Case #1: 5
Case #2: 10

Hint

In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.  

     这题提醒的我就是在求一个数的质因数时..可以先将质数表打出来...10^9内的..质数表只需要扫到32000多(因为32000*32000>100000000了)...最终是打出3000多个质数..但要注意的是..有可能给的数就是质数..或者说有大于32000的质因数..但这样的质因数绝对最多一个...so...见程序.....


Program: 

#include<iostream>
#define ll long long
using namespace std;
ll a,b,n,t,T,x,s[31],M,N,ans,p;
int Prime[40000];
void DFS(ll i,ll w,ll k)
{
      for (;i<=n;i++)
      {
            p=w*s[i];
            M+=k*(N/p);
            DFS(i+1,p,-k);
      }
      return;
}
int main()
{
      freopen("input.txt","r",stdin);
      freopen("output.txt","w",stdout);
      scanf("%I64d",&T);
      ll i,j,num=0;
      for (i=2;i<=33000;i++)
      {
            for (j=2;j*j<=i;j++)
               if (i%j==0) goto A;
            Prime[++num]=i;
            A: ;
      }
      for (t=1;t<=T;t++)
      {
            scanf("%I64d%I64d%I64d",&a,&b,&x);
            n=0;
            for (i=1;i<=num;i++) 
            if (x%Prime[i]==0)
            {
                   while (x%Prime[i]==0) x/=Prime[i];
                   s[++n]=Prime[i];
                   if (x==1) break;
            }
            if (x!=1) s[++n]=x;  // 处理超过32000的质因数
            a--;
            M=0; N=a;
            DFS(1,1,1);
            M=a-M;
            ans=M;
            M=0; N=b;
            DFS(1,1,1);
            M=b-M;
            ans=M-ans;
            printf("Case #%I64d: %I64d\n",t,ans);      
      }
      return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

poj2773-容斥原理(dfs+二分+素数表+素因子分解)

Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8661   Acc...

Java中循环问题:for,while,do-while 各种练习(打印上三角、下三角、输出100以内的素数、水仙花、最大公约、最小公倍数、分解质因数、兔子问题)

package jereh1; import java.util.Scanner; public class Class2XunHuan { public static void main(St...

POJ 1365(质因数分级+素数打表)

题目大意(质因数分解+素数打表):给出n的质因数分解式,求n-1的质因数的分解式。比如第二组sample,就是5^1*2^1=10, 求10-1即9的质因数分解,从大到小输出。

Ural1055(素数打表+分解质因数)

1055. Combinations Time limit: 1.0 second Memory limit: 64 MB Background As you have known...

hdu1016 Prime Ring Problem dfs 素数打表

意思是给你一个数n,要构成一个素数环,这个素数由1-n组成,它的特征是选中环上的任意一个数字i,i与它相连的两个数加起来都分别为素数,满足就输出。这个题的做法和hdu1015做法差不多都是使用dfs ...

POJ 1181 大整数是否为素数以及求大整数的质因数-数论-(Miller_rabin+Pollard_rho)

题意:求一个整数是否是素数,如果不是,则输出它最小的质因数。 分析: 判断一个大整数是否为素数用Miller_rabin算法,求一个大整数的所有质因数用Pollard_rho算法。这题就是直接套模...

HDU 4407 Sum(容斥原理+质因数分解)

HDU 4407题意:给一个长度为n的序列,序列由1~n依次组成。 对序列执行两种操作: 1.查询[x,y]内与p互素的数的和; 2.修改第x数为c.思路:往线段树的方向想了半天,发现就是容斥原...

容斥原理+质因数分解+组合数学

poj 3904---容斥原理

HDU 1016.Prime Ring Problem【DFS(递归)】【素数打表】【8月17】

Prime Ring Problem Problem Description A ring is compose of n circles as shown in diagram. Put na...

杭电-1016Prime Ring Problem(素数打表+DFS)

Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)