“看懂”卷积神经网(Visualizing and Understanding Convolutional Networks)

翻译 2013年12月06日 18:15:43

        在所有深度网络中,卷积神经网和图像处理最为密切相关,卷积网在很多图片分类竞赛中都取得了很好的效果,但卷积网调参过程很不直观,很多时候都是碰运气。为此,卷积网发明者Yann LeCun的得意门生Matthew Zeiler在2013年专门写了一篇论文,阐述了如何用反卷积网络可视化整个卷积网络,并进行分析和调优。由于课题研究需要使用卷积网,本人凭自己的理解将该文翻译成了中文,内容没有严格对齐原文,水平有限,难免出现大量错误,请大家包涵。

        简单总结本文内容:当输入一张图片到卷积网中时,网络会逐级产生特征,但究竟是图片中的哪一部分刺激网络产生了特定特征,没法直接得到;作者想到了一种办法:将产生的特征通过反卷积技术,重构出对应的输入刺激,而重构的刺激只会显示真正有用东西,作者就可以通过分析这些信息来分析模型,实现模型调优。

原文地址:http://arxiv.org/pdf/1311.2901.pdf

             

        











举报

相关文章推荐

深度学习研究理解5:Visualizing and Understanding Convolutional Networks

Visualizing and understandingConvolutional Networks 本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主...

TensorFlow学习笔记(3)--实现Softmax逻辑回归识别手写数字(MNIST数据集)

基于MNIST数据集的 逻辑回归模型做十分类任务 没有隐含层的Softmax Regression只能直接从图像的像素点推断是哪个数字,而没有特征抽象的过程。多层神经网络依靠隐含层,则可以组合出高阶...
  • lwplwf
  • lwplwf
  • 2017-03-06 22:15
  • 2820

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

TensorFlow下MNIST数据集下载脚本input_data.py

TensorFlow官方文档里面,MNIST数据集下载脚本。 网页原始url打不开,这里给出github地址。下面也贴出源码。
  • lwplwf
  • lwplwf
  • 2017-02-06 21:07
  • 6009

Tensorflow学习笔记(8)——input_data.py解析

这里学习一下前面用到的读取mnist数据库文件的代码。其实并没有用到Tensorlfow的东西,但是读取数据库文件是使用Tensorflow编程实现功能的基础,因此归到Tensorflow的学习笔记中...

卷积与反卷积的理解

在文章: Fully Convolutional Networks for Semantic Segmentation 网址:https://arxiv.org/abs/1411.4038 中有...

卷积RBM源码解读

前言 卷积RBM相对RBM来说具有很多优势,详细的我也不说了,看文章就行。主要还是为了加深自己对细节部分的理解吧。 国际惯例,贴几个链接 卷积RBM的创始人Honglak Lee:http://web...

Div+CSS布局入门教程

作者:aultoale 时间: 2006-06-10 文档类型:原创 来自:蓝色理想

dodo:人脸识别方法个人见解

http://blog.sina.com.cn/s/blog_4d92192101008en6.html (此贴最开始于 2007-6-23 19:50 发表在 prfans...
  • kklots
  • kklots
  • 2013-06-16 22:04
  • 1365

Deconvolution Network简单理解)

Deep learning:五十(Deconvolution Network简单理解)     深度网络结构是由多个单层网络叠加而成的,而常见的单层网络按照编码解码情况可以分为下面3类: ...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)