堆排序

原创 2016年05月31日 23:31:33

题目:堆排序

分析:降序:小堆;升序,大堆

堆排序也是选择排序,时间复杂度为O(NlogN);

函数HeapSort():
思路:步骤1->先进行建堆,降序:小堆;升序:大堆;
  步骤2->最小堆堆顶最小值与最后一个叶子结点交换;
  步骤3->缩小堆的大小size,将最小值排除;
  步骤4->把堆再进行一次向下调整_AdjustDown,保证堆为最小堆;

向下调整函数_AdjustDown()
思路:参数传入最后一个非叶子结点的父亲;那child = 2*root+1;
  每一棵子树都进行下调;

如下代码为降序,则实现的是小堆:

代码如下:



<span style="font-size:18px;">#include<assert.h>
#include<iostream>
using namespace std;

//向下调整
void _AdjustDown(int* KOfArr,int k,int root)
{
	int child = root * 2 + 1;
	while (child < k - 1)
	{
		if (child + 1 < k - 1 && KOfArr[child] > KOfArr[child + 1])
		{
			++child;
		}
		if (KOfArr[child] < KOfArr[root])
		{
			swap(KOfArr[child], KOfArr[root]);
			root = child;
			child = 2 * root + 1;
		}
		else
		{
			break;
		}
	}
}

void Print(int* KOfArr, int k)
{
	assert(KOfArr);
	assert(k > 0);

	for (int i = 0; i < k; ++i)
	{
		cout << KOfArr[i] << " ";
	}
	cout << endl;
}

//降序,小堆

void HeapSort(int* arr,int len)
{
	assert(arr);
	assert(len > 0);

	//建堆->从最后一个非叶子结点开始调整
	int i = 0;
	for (i = len-1; i >= 0; --i)
	{
		int root = (i - 1) / 2;
		_AdjustDown(arr, len, root);
	}

	i = len;
	while (i > 1)
	{
		swap(arr[0], arr[i - 1]);
		//先将排好的最小值舍去再向下调整
		--i;
		_AdjustDown(arr,i,0);
	}
}

void TestHeapSort()
{
	int arr[10] = { 10, 11, 13, 12, 16, 18, 15, 17, 14, 19 };
	HeapSort(arr, sizeof(arr) / sizeof(arr[0]));
	Print(arr, sizeof(arr) / sizeof(arr[0]));
}

</span>



测试结果如下图:




版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

堆排序之Java实现

堆排序法.cpp

三、算法_堆排序

堆排序 堆排序介绍 堆是一个完全二叉树:每个节点的值都大于或等于其左右孩子节点的值,称为大顶堆;或每个节点值都小雨等于其左右孩子的值,称为小顶堆。堆排序C#实现-顺序存储:class Progra...

堆排序及其用途

  • 2016-03-25 13:46
  • 214KB
  • 下载

堆排序算法c语言实现

堆排序 HeapSort

堆排序 HeapSort二叉堆是一组能够用堆有序的完全二叉树排序的元素,并在数组中按照层级存储(不适用数组的一个位置,下标从1开始)!二叉堆可以很好的实现优先队列的基本操作。优先队列是一种抽象的数据结...

堆排序

  • 2014-12-25 21:57
  • 205KB
  • 下载

堆排序算法导论

  • 2013-11-11 23:54
  • 152KB
  • 下载

堆排序

堆排序

堆排序算法

内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)