关闭

堆排序

128人阅读 评论(0) 收藏 举报
分类:

题目:堆排序

分析:降序:小堆;升序,大堆

堆排序也是选择排序,时间复杂度为O(NlogN);

函数HeapSort():
思路:步骤1->先进行建堆,降序:小堆;升序:大堆;
  步骤2->最小堆堆顶最小值与最后一个叶子结点交换;
  步骤3->缩小堆的大小size,将最小值排除;
  步骤4->把堆再进行一次向下调整_AdjustDown,保证堆为最小堆;

向下调整函数_AdjustDown()
思路:参数传入最后一个非叶子结点的父亲;那child = 2*root+1;
  每一棵子树都进行下调;

如下代码为降序,则实现的是小堆:

代码如下:



<span style="font-size:18px;">#include<assert.h>
#include<iostream>
using namespace std;

//向下调整
void _AdjustDown(int* KOfArr,int k,int root)
{
	int child = root * 2 + 1;
	while (child < k - 1)
	{
		if (child + 1 < k - 1 && KOfArr[child] > KOfArr[child + 1])
		{
			++child;
		}
		if (KOfArr[child] < KOfArr[root])
		{
			swap(KOfArr[child], KOfArr[root]);
			root = child;
			child = 2 * root + 1;
		}
		else
		{
			break;
		}
	}
}

void Print(int* KOfArr, int k)
{
	assert(KOfArr);
	assert(k > 0);

	for (int i = 0; i < k; ++i)
	{
		cout << KOfArr[i] << " ";
	}
	cout << endl;
}

//降序,小堆

void HeapSort(int* arr,int len)
{
	assert(arr);
	assert(len > 0);

	//建堆->从最后一个非叶子结点开始调整
	int i = 0;
	for (i = len-1; i >= 0; --i)
	{
		int root = (i - 1) / 2;
		_AdjustDown(arr, len, root);
	}

	i = len;
	while (i > 1)
	{
		swap(arr[0], arr[i - 1]);
		//先将排好的最小值舍去再向下调整
		--i;
		_AdjustDown(arr,i,0);
	}
}

void TestHeapSort()
{
	int arr[10] = { 10, 11, 13, 12, 16, 18, 15, 17, 14, 19 };
	HeapSort(arr, sizeof(arr) / sizeof(arr[0]));
	Print(arr, sizeof(arr) / sizeof(arr[0]));
}

</span>



测试结果如下图:




1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:15339次
    • 积分:733
    • 等级:
    • 排名:千里之外
    • 原创:57篇
    • 转载:1篇
    • 译文:0篇
    • 评论:6条
    最新评论