最小生成树Prim算法理解

转载 2017年03月10日 11:41:48

MST(Minimum Spanning Tree,最小生成树)问题有两种通用的解法,Prim算法就是其中之一,它是从点的方面考虑构建一颗MST,大致思想是:设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。


用图示和代码说明:

初始状态:


设置2个数据结构:

lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说明以i为终点的边的最小权值=0,也就是表示i点加入了MST

mst[i]:表示对应lowcost[i]的起点,即说明边<mst[i],i>是MST的一条边,当mst[i]=0表示起点i加入MST


我们假设V1是起始点,进行初始化(*代表无限大,即无通路):


lowcost[2]=6lowcost[3]=1lowcost[4]=5lowcost[5]=*,lowcost[6]=*

mst[2]=1mst[3]=1,mst[4]=1mst[5]=1,mst[6]=1(所有点默认起点是V1)


明显看出,以V3为终点的边的权值最小=1,所以边<mst[3],3>=1加入MST


此时,因为点V3的加入,需要更新lowcost数组和mst数组:

lowcost[2]=5lowcost[3]=0lowcost[4]=5lowcost[5]=6,lowcost[6]=4

mst[2]=3mst[3]=0,mst[4]=1mst[5]=3,mst[6]=3


明显看出,以V6为终点的边的权值最小=4,所以边<mst[6],6>=4加入MST


此时,因为点V6的加入,需要更新lowcost数组和mst数组:

lowcost[2]=5lowcost[3]=0lowcost[4]=2lowcost[5]=6lowcost[6]=0

mst[2]=3mst[3]=0,mst[4]=6mst[5]=3,mst[6]=0


明显看出,以V4为终点的边的权值最小=2,所以边<mst[4],4>=4加入MST


此时,因为点V4的加入,需要更新lowcost数组和mst数组:

lowcost[2]=5,lowcost[3]=0,lowcost[4]=0,lowcost[5]=6lowcost[6]=0

mst[2]=3,mst[3]=0,mst[4]=0mst[5]=3mst[6]=0


明显看出,以V2为终点的边的权值最小=5,所以边<mst[2],2>=5加入MST


此时,因为点V2的加入,需要更新lowcost数组和mst数组:

lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=3,lowcost[6]=0

mst[2]=0,mst[3]=0,mst[4]=0mst[5]=2mst[6]=0


很明显,以V5为终点的边的权值最小=3,所以边<mst[5],5>=3加入MST

lowcost[2]=0,lowcost[3]=0lowcost[4]=0,lowcost[5]=0lowcost[6]=0

mst[2]=0,mst[3]=0mst[4]=0,mst[5]=0mst[6]=0


至此,MST构建成功,如图所示:


根据上面的过程,可以容易的写出具体实现代码如下(cpp):





#include<iostream>
#include<fstream>
using  namespace std;

#define MAX 100
#define MAXCOST 0x7fffffff

int graph[MAX][MAX];

int prim(int graph[][MAX], int n)
{
    int lowcost[MAX];
    int mst[MAX];
    int i, j, min, minid, sum = 0;
    for (i = 2; i <= n; i++)
    {
        lowcost[i] = graph[1][i];
        mst[i] = 1;
    }
    mst[1] = 0;
    for (i = 2; i <= n; i++)
    {
        min = MAXCOST;
        minid = 0;
        for (j = 2; j <= n; j++)
        {
            if (lowcost[j] < min && lowcost[j] != 0)
            {
                min = lowcost[j];
                minid = j;
            }
        }
        cout << "V" << mst[minid] << "-V" << minid << "=" << min << endl;
        sum += min;
        lowcost[minid] = 0;
        for (j = 2; j <= n; j++)
        {
            if (graph[minid][j] < lowcost[j])
            {
                lowcost[j] = graph[minid][j];
                mst[j] = minid;
            }
        }
    }
    return sum;
}

int main()
{
    int i, j, k, m, n;
    int x, y, cost;
    ifstream in("input.txt");
    in >> m >> n;//m=顶点的个数,n=边的个数
    //初始化图G
    for (i = 1; i <= m; i++)
    {
        for (j = 1; j <= m; j++)
        {
            graph[i][j] = MAXCOST;
        }
    }
    //构建图G
    for (k = 1; k <= n; k++)
    {
        in >> i >> j >> cost;
        graph[i][j] = cost;
        graph[j][i] = cost;
    }
    //求解最小生成树
    cost = prim(graph, m);
    //输出最小权值和
    cout << "最小权值和=" << cost << endl;
    system("pause");
    return 0;
}

Input:

6 10
1 2 6
1 3 1
1 4 5
2 3 5
2 5 3
3 4 5
3 5 6
3 6 4
4 6 2
5 6 6

Output:

V1-V3=1
V3-V6=4
V6-V4=2
V3-V2=5
V2-V5=3
最小权值和=15
请按任意键继续. . .


相关文章推荐

最小生成树(Prim算法)

  • 2015年06月13日 23:00
  • 2KB
  • 下载

Prim算法最小生成树(C语言)

  • 2014年10月16日 16:31
  • 516B
  • 下载

最小生成树Prim算法理解

MST(Minimum Spanning Tree,最小生成树)
  • yeruby
  • yeruby
  • 2014年08月16日 18:49
  • 66889

用Prim算法构造最小生成树

  • 2013年12月07日 20:18
  • 1KB
  • 下载

prim算法最小生成树

  • 2008年02月19日 11:11
  • 31KB
  • 下载

hdu4081 最小生成树的变形,通过此题理解了什么时候不能用优先队列实现prim算法

问题大概思路,摘选自网络:我就不说题意了,为了使A/B最大,就应该是B越小,故可以先求出n个点的最小生成树。因此,可以枚举每一条边,假设最小生成树的值是B, 而枚举的那条边长度是edge[i][j],...

实现构造最小生成树的Prim算法

  • 2016年12月14日 19:43
  • 3.42MB
  • 下载

最小生成树Prim算法

  • 2013年11月03日 22:07
  • 12KB
  • 下载

理解最小生成树 prim算法

在无向加权图中,n个顶点的最小生成树有n-1条边,这些边使得n个顶点之间可达,且总的代价最小。 prim算法是一种贪心算法,将全部的顶点划分为2个集合,每次总在2个集合之间中找最小的一条边,局部最优...

Prim算法实现最小生成树

  • 2017年11月12日 14:22
  • 1014B
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最小生成树Prim算法理解
举报原因:
原因补充:

(最多只允许输入30个字)