Python-Pandas(4)自定义函数方法

原创 2017年08月13日 09:39:17
#specifying axis=1 or axis='columns' will drop any columns that have null values
drop_na_columns = titanic_survival.dropna(axis=1)
new_titanic_survival = titanic_survival.dropna(axis=0,subset=["Age", "Sex"])
#print new_titanic_survival
row_index_83_age = titanic_survival.loc[83,"Age"]
row_index_1000_pclass = titanic_survival.loc[766,"Pclass"]
print row_index_83_age
print row_index_1000_pclass

这里写图片描述

new_titanic_survival = titanic_survival.sort_values("Age",ascending=False)
print new_titanic_survival[0:10]
itanic_reindexed = new_titanic_survival.reset_index(drop=True)
print(titanic_reindexed.iloc[0:10])

这里写图片描述

# This function returns the hundredth item from a series
def hundredth_row(column):
    # Extract the hundredth item
    hundredth_item = column.iloc[99]
    return hundredth_item

# Return the hundredth item from each column
hundredth_row = titanic_survival.apply(hundredth_row)
print hundredth_row

这里写图片描述

def not_null_count(column):
    column_null = pd.isnull(column)
    null = column[column_null]
    return len(null)

column_null_count = titanic_survival.apply(not_null_count)
print column_null_count

这里写图片描述

#By passing in the axis=1 argument, we can use the DataFrame.apply() method to iterate over rows instead of columns.
def which_class(row):
    pclass = row['Pclass']
    if pd.isnull(pclass):
        return "Unknown"
    elif pclass == 1:
        return "First Class"
    elif pclass == 2:
        return "Second Class"
    elif pclass == 3:
        return "Third Class"

classes = titanic_survival.apply(which_class, axis=1)
print classes

这里写图片描述

def is_minor(row):
    if row["Age"] < 18:
        return True
    else:
        return False

minors = titanic_survival.apply(is_minor, axis=1)
#print minors

def generate_age_label(row):
    age = row["Age"]
    if pd.isnull(age):
        return "unknown"
    elif age < 18:
        return "minor"
    else:
        return "adult"

age_labels = titanic_survival.apply(generate_age_label, axis=1)
print age_labels

这里写图片描述

titanic_survival['age_labels'] = age_labels
age_group_survival = titanic_survival.pivot_table(index="age_labels", values="Survived")
print age_group_survival

这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。

Pandas groupby apply agg 区别 运行自定义函数

agg 方法将一个函数使用在一个数列上,然后返回一个标量的值。也就是说agg每次传入的是一列数据,对其聚合后返回标量。 对一列使用三个函数: 对不同列使用不同函数 apply 是一个更一...

python 把自定义的函数添加到python库中的方法

python扩展库的管理方法。

Matlab自定义函数的五种方法

  • 2013年01月01日 20:53
  • 1.51MB
  • 下载

PHP移动互联网开发笔记(4)——自定义函数及数组

一、自定义函数 二、数组定义赋值 三、数组操作 四、二维数组 五、数组函数...

python 常用库 bs4 htmllib pandas request

  • 2017年07月03日 23:55
  • 38.81MB
  • 下载

GTK自定义函数之滚动窗口(4)-bobo

利用滚动窗口,设置滑动。 接口函数源代码,请查看《GTK自定义函数(1)》,具体介绍和相关demo请看以下内容:     /**************************************...

4)mysql自定义函数和存储过程

十自定义函数 十一存储过程 1 mysql解析sql的流程 2 存储过程的特点 3 创建语法 4 例子 十二存储过程与自定义函数的区别十、自定义函数 函数体 例子:创建不带参数的自定义函数: my...
  • hp5321
  • hp5321
  • 2016年12月21日 16:48
  • 98

MySQL(4)-自定义函数

MySQL自定义函数自定义函数 用户自定义函数(user-defined function, UDF),是一种对MySQL扩展的途径,其用法与内置函数相同,自定义函数的两个必要条件: ...

MySQL学习笔记 4:自定义函数和MySQL存储过程

一、自定义函数UDF 1.  语法结构 CREATE FUNCTION functon_name([参数名 参数类型,...]) RETURNS 返回值类型 函数体 2.例子 DELIMI...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Python-Pandas(4)自定义函数方法
举报原因:
原因补充:

(最多只允许输入30个字)