关闭

Python-Pandas(4)自定义函数方法

标签: pandas
74人阅读 评论(0) 收藏 举报
分类:
#specifying axis=1 or axis='columns' will drop any columns that have null values
drop_na_columns = titanic_survival.dropna(axis=1)
new_titanic_survival = titanic_survival.dropna(axis=0,subset=["Age", "Sex"])
#print new_titanic_survival
row_index_83_age = titanic_survival.loc[83,"Age"]
row_index_1000_pclass = titanic_survival.loc[766,"Pclass"]
print row_index_83_age
print row_index_1000_pclass

这里写图片描述

new_titanic_survival = titanic_survival.sort_values("Age",ascending=False)
print new_titanic_survival[0:10]
itanic_reindexed = new_titanic_survival.reset_index(drop=True)
print(titanic_reindexed.iloc[0:10])

这里写图片描述

# This function returns the hundredth item from a series
def hundredth_row(column):
    # Extract the hundredth item
    hundredth_item = column.iloc[99]
    return hundredth_item

# Return the hundredth item from each column
hundredth_row = titanic_survival.apply(hundredth_row)
print hundredth_row

这里写图片描述

def not_null_count(column):
    column_null = pd.isnull(column)
    null = column[column_null]
    return len(null)

column_null_count = titanic_survival.apply(not_null_count)
print column_null_count

这里写图片描述

#By passing in the axis=1 argument, we can use the DataFrame.apply() method to iterate over rows instead of columns.
def which_class(row):
    pclass = row['Pclass']
    if pd.isnull(pclass):
        return "Unknown"
    elif pclass == 1:
        return "First Class"
    elif pclass == 2:
        return "Second Class"
    elif pclass == 3:
        return "Third Class"

classes = titanic_survival.apply(which_class, axis=1)
print classes

这里写图片描述

def is_minor(row):
    if row["Age"] < 18:
        return True
    else:
        return False

minors = titanic_survival.apply(is_minor, axis=1)
#print minors

def generate_age_label(row):
    age = row["Age"]
    if pd.isnull(age):
        return "unknown"
    elif age < 18:
        return "minor"
    else:
        return "adult"

age_labels = titanic_survival.apply(generate_age_label, axis=1)
print age_labels

这里写图片描述

titanic_survival['age_labels'] = age_labels
age_group_survival = titanic_survival.pivot_table(index="age_labels", values="Survived")
print age_group_survival

这里写图片描述

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:29961次
    • 积分:832
    • 等级:
    • 排名:千里之外
    • 原创:57篇
    • 转载:3篇
    • 译文:0篇
    • 评论:0条