Python-Pandas(6)数据索引变换

原创 2017年08月13日 10:07:25
import pandas as pd

这里写图片描述

#will return a new DataFrame that is indexed by the values in the specified column 
#and will drop that column from the DataFrame
#without the FILM column dropped 
fandango = pd.read_csv('fandango_score_comparison.csv')
print type(fandango)
fandango_films = fandango.set_index('FILM', drop=False)
#print(fandango_films.index)

这里写图片描述

# Slice using either bracket notation or loc[]
fandango_films["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]
fandango_films.loc["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]

# Specific movie
fandango_films.loc['Kumiko, The Treasure Hunter (2015)']

# Selecting list of movies
movies = ['Kumiko, The Treasure Hunter (2015)', 'Do You Believe? (2015)', 'Ant-Man (2015)']
fandango_films.loc[movies]

#When selecting multiple rows, a DataFrame is returned, 
#but when selecting an individual row, a Series object is returned instead

这里写图片描述

#The apply() method in Pandas allows us to specify Python logic
#The apply() method requires you to pass in a vectorized operation 
#that can be applied over each Series object.
import numpy as np

# returns the data types as a Series
types = fandango_films.dtypes
#print types
# filter data types to just floats, index attributes returns just column names
float_columns = types[types.values == 'float64'].index
# use bracket notation to filter columns to just float columns
float_df = fandango_films[float_columns]
#print float_df
# `x` is a Series object representing a column
deviations = float_df.apply(lambda x: np.std(x))

print(deviations)

这里写图片描述

rt_mt_user = float_df[['RT_user_norm', 'Metacritic_user_nom']]
rt_mt_user.apply(lambda x: np.std(x), axis=1)

这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。

生成csv文件并下载

在做项目中,我们做一个功能的时候,可能要把数据做导出或下载处理, 下载成各种格式, 下面提供了一种excel下载格式----csv; 将得到的数据,经过处理生成csv文件,并激活下载到本地; ...

Python数据可视化-Matplotlib学习笔记(1)--折线图为例画图入门

Matplotlib的官网地址:http://matplotlib.org/在使用Python做数据处理的时,大量的数据我们看起来并不是很直观,有时候把它图形化显示反而更能容易的观察数据的变化特征等等...
  • lwplwf
  • lwplwf
  • 2017年03月28日 10:36
  • 3231

利用Python进行数据分析(11) pandas基础: 层次化索引

层次化索引 层次化索引指你能在一个数组上拥有多个索引,例如: 有点像Excel里的合并单元格对么? 根据索引选择数据子集   以外层索引的方式选择数据子集: ...

python/pandas/numpy数据分析(十)-函数, rank,重复索引

DataFrame的apply方法,将函数应用到行或者列形成的一维数组上.frame=pd.DataFrame(np.random.randn(4,3),columns=list('bde'),ind...

python的pandas包数据框单层索引操作核心方法loc,iloc,ix,query

使用python3,软件为ipython notebook loc,iloc,ix,query函数的操作简介

python/pandas数据分析(十六)- 数据索引与选取

我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列、区域、单元格。 其对应使用的方法如下: 一. 行,列 –> df[] 二. 区域 –> df.loc[], df.iloc[...

Python数据分析与展示(6)——Pandas数据特征分析

最近在中国大学mooc网学习Python数据分析与展示相关知识,记入下来,以供参考。...

基于python pandas数据分析基础demo

  • 2017年11月24日 16:51
  • 31KB
  • 下载

数据预处理(2) ——数据变换与数据离散化 使用python(sklearn,pandas,numpy)实现

数据预处理的主要任务有: 一、数据预处理 1.数据清洗 2.数据集成 3.数据转换 4.数据归约 3.数据变换 数据变换是指将数据转换或统一成适合于挖掘的形式。 (1)数据泛化:...

详解pandas数据结构和索引

pandas数据结构和索引是入门pandas必学的内容,这里就详细给大家讲解一下,看完本篇文章,相信你对pandas数据结构和索引会有一个清晰的认识。   一、数据结构介绍 在pan...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Python-Pandas(6)数据索引变换
举报原因:
原因补充:

(最多只允许输入30个字)