Python-Pandas(6)数据索引变换

原创 2017年08月13日 10:07:25
import pandas as pd

这里写图片描述

#will return a new DataFrame that is indexed by the values in the specified column 
#and will drop that column from the DataFrame
#without the FILM column dropped 
fandango = pd.read_csv('fandango_score_comparison.csv')
print type(fandango)
fandango_films = fandango.set_index('FILM', drop=False)
#print(fandango_films.index)

这里写图片描述

# Slice using either bracket notation or loc[]
fandango_films["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]
fandango_films.loc["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]

# Specific movie
fandango_films.loc['Kumiko, The Treasure Hunter (2015)']

# Selecting list of movies
movies = ['Kumiko, The Treasure Hunter (2015)', 'Do You Believe? (2015)', 'Ant-Man (2015)']
fandango_films.loc[movies]

#When selecting multiple rows, a DataFrame is returned, 
#but when selecting an individual row, a Series object is returned instead

这里写图片描述

#The apply() method in Pandas allows us to specify Python logic
#The apply() method requires you to pass in a vectorized operation 
#that can be applied over each Series object.
import numpy as np

# returns the data types as a Series
types = fandango_films.dtypes
#print types
# filter data types to just floats, index attributes returns just column names
float_columns = types[types.values == 'float64'].index
# use bracket notation to filter columns to just float columns
float_df = fandango_films[float_columns]
#print float_df
# `x` is a Series object representing a column
deviations = float_df.apply(lambda x: np.std(x))

print(deviations)

这里写图片描述

rt_mt_user = float_df[['RT_user_norm', 'Metacritic_user_nom']]
rt_mt_user.apply(lambda x: np.std(x), axis=1)

这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。

pandas数据索引变换

mport pandas as pd import numpy as np fandango = pd.read_csv('fandango_score_comparison.csv') # ---...
  • qq_32005671
  • qq_32005671
  • 2017年03月13日 20:19
  • 153

Lucene 6.2.1入门教程(一) 创建索引和基本搜索索引

简单说两句,Lucene现在高版本的教程很少,网上基本是4.0以下的,目前最新版是6.2.1,所以我试着来写写这个版本的教程。   至于那些概念什么的,我就不多说了,大家可以参考以前的旧教程来了解L...
  • ccdust
  • ccdust
  • 2016年12月03日 22:22
  • 2659

python-pandas

------reference------------ [1]. http://nbviewer.jupyter.org/github/rasbt/python_reference/blob/mast...
  • sau_lwy
  • sau_lwy
  • 2016年04月15日 20:56
  • 185

Lucene6入门教程(二)索引的创建

(一)索引的创建步骤: 学习Lucene,最重要的一点在于索引的建立,这是一切搜索等的基础,Lucene6创建索引的步骤如下: (1)创建目录(Directory),(即多线...
  • rensihui
  • rensihui
  • 2017年08月21日 15:37
  • 486

Python-Pandas 如何shuffle(打乱)数据?

在Python里面,使用Pandas里面的DataFrame来存放数据的时候想要把数据集进行shuffle会许多的方法,本文介绍两种比较常用而且简单的方法。 应用情景: 我们有下面以个DataFram...
  • qq_22238533
  • qq_22238533
  • 2017年04月28日 15:50
  • 7663

Lucene 6教程(三) 索引域选项

通过上两篇的学习,想必已经入了门了,今天来看索引域选项中的几个值得设置  先来看一个构造器: /** * Create a field by specifying its name, ...
  • shuyun123456789
  • shuyun123456789
  • 2017年01月16日 21:16
  • 907

白手起家学习数据科学 ——处理数据之“尺度变换篇”(七)

尺度变化(Rescaling)许多技术对数据尺度很敏感。例如,设想一下,你有包含数百数据科学家身高(height)、体重(weight)的数据集,你正在尝试对其进行聚类。直观上,我们想要聚集区表示彼此...
  • shaomingliang499
  • shaomingliang499
  • 2015年12月03日 14:12
  • 301

数据变换的万能钥匙:Box-Cox变换

摘要:至于说什么时候应该用哪个函数来作变换,原文也针对常见的几种情况给出了一些建议。当然,我们会遇到的数据纷繁复杂,究竟用什么函数效果比较好,还是得通过反复尝试并实际验证才知道。 读过两天前推送的《...
  • bbbeoy
  • bbbeoy
  • 2017年06月11日 21:09
  • 684

OpenGL实践4之索引绘制

OpenGL实践4之索引绘制 DionysosLai(906391500@qq.com) 引言:        之前我们绘图时,都是使用glDrawArrays函数,采用的是“序列绘图”(ord...
  • Dionysos_lai
  • Dionysos_lai
  • 2016年04月06日 00:08
  • 1380

Python-pandas常用函数

1、map()函数 重点:对元素进行操作,作用集合和返回集合都是series API:http://pandas.pydata.org/pandas-docs/stable/generated/p...
  • u010496169
  • u010496169
  • 2017年04月25日 22:02
  • 280
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Python-Pandas(6)数据索引变换
举报原因:
原因补充:

(最多只允许输入30个字)