关闭

poj 2184 Cow Exhibition

标签: acmpojdp背包
267人阅读 评论(0) 收藏 举报
分类:

题目链接: 点击打开链接

题目大意: 选牛,要求smart值和fun值总和最高且总smart和总fun值都不能为负数

思路: 动态规划,01背包

分析: 

可以以smart作为体积,fun作为价值来考虑。状态转换方程:dp[j]=max{dp[j], dp[j-s[i]]+f[i]}。dp结束后寻找大于等于0的体积,计算体积和价值总和,求得一个最大值。

由于smart可以有负数,因此要转换一下。100头牛smart总和范围为[-100000, 100000],所以开一个大于200000的dp数组,以100000作为原点,就不怕负数下标了。

对于某一头牛,如果smart大于0,和通常一维01背包一样,从大往小考虑背包体积;如果smart小于0就不一样了,j-s[i]这个下标大于j,也就是说小体积背包要依赖大体积背包的价值,这时应该从小往大考虑背包体积。

代码:

#include <cstdio>
#include <algorithm>
#include <memory.h>
using namespace std;

const int maxs = 200000 + 2000;
const int maxn = 100 + 10;
const int INF = -9999999;
const int ORI = 100000;

int n, top, down, smart[maxn], fun[maxn], dp[maxs];

void solve()
{
	memset(dp, INF, sizeof(dp));
	dp[ORI] = 0;
	int r = ORI + top, l = ORI + down;
	for (int i = 1; i <= n; ++i) {
		if (smart[i] >= 0)
			for (int j = r; j >= l; --j)
				dp[j] = max(dp[j-smart[i]] + fun[i], dp[j]);
		else
			for (int j = l; j <= r; ++j)
				dp[j] = max(dp[j-smart[i]] + fun[i], dp[j]);
	}
}

void output()
{
	int tf_ts = 0;
	for (int i = ORI; i <= ORI + top; ++i)
		if (dp[i] >= 0)
			tf_ts = max(tf_ts, dp[i] + i - ORI);
	printf("%d\n", tf_ts);
}

int main()
{
	scanf("%d", &n);
	top = 0; down = 0;
	for (int i = 1; i <= n; ++i)
	{
		scanf("%d %d", &smart[i], &fun[i]);
		if (smart[i] > 0)
			top += smart[i];
		else
			down += smart[i];
	}
	solve();
	output();
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:22400次
    • 积分:634
    • 等级:
    • 排名:千里之外
    • 原创:42篇
    • 转载:8篇
    • 译文:0篇
    • 评论:0条