机器学习中标称型数据和数值型数据的区别

原创 2017年08月29日 10:42:56

这两种数据在监督学习的分类一章经常有说到




标称型:一般在有限的数据中取,而且只存在‘是’和‘否’两种不同的结果(一般用于分类)


数值型:可以在无限的数据中取,而且数值比较具体化,例如4.02,6.23这种值(一般用于回归分析)

Tricks(三十四)—— 判断某一属性列是数值型还是标称型

# 这时还未将标称型属性从字符串转化为 int if isinstance(x[feat], int) or isinstance(x[feat], float): ... else: ...

2016 机器学习之路:一年从无到有掌握机器学习

【新智元导读】程序员 Per Harald Borgen 在 Medium 刊文,介绍了他在一年的时间里,从入门到掌握机器学习的历程。Borgen 表示,即使没有博士学位和高深的数学造诣也能掌握机器学...
  • lc0817
  • lc0817
  • 2017年02月07日 08:44
  • 1518

《机器学习实战》预测数值型数据-回归(Regression)

回归的一般方法: (1)收集数据:采用任意方法收集数据 (2)准备数据:回归需要数值型数据,标称型数据将被转化成二值型数据 (3)分析数据:绘出数据的可视化二维图将有助于对数据做出理解和分析,在采用缩...

机器学习实战——预测数值型数据:回归

一、线性回归——寻找最佳nih

机器学习之-预测数值型数据:回归-具体怎么实现及应用

1、局部加权线性回归: 就是给样本集X中样本点x一个权重系数,常用的就是高斯核函数。 2、对于特征比样本点还多的情况怎么处理: 通过缩减系数来“理解”数据: a)岭回归缩减法; b)lasso缩减法;...

代码注释:机器学习实战第8章 预测数值型数据:回归

在学习的过程中发现书中很多代码并没有注释,这对新入门的同学是一个挑战,特此贴出我对代码做出的注释,仅供参考,欢迎指正。...

机器学习实战笔记-预测数值型数据:回归

8. 1 用线性回归找到最佳拟合直线线性回归 优点:结果易于理解,计算上不复杂。 缺点:对非线性的数据拟合不好。 适用数据类型:数值型和标称型数据。回归的目的是预测数值型的目标值。最直接的办法是...

机器学习实战 第八章 预测数值型数据:回归(Regression)

首先介绍线性回归,然后引入局部平滑技术,更好地拟合数据。接着探讨回归在“欠拟合”情况下的缩减(shrinkage),探讨偏差和方差的概念。用线性回归找到最佳拟合直线优点:结果已于理解,计算上并不复杂。...

《机器学习实战》笔记之八——预测数值型数据:回归

第八章 预测数值型数据:回归 8.1 用线性回归找到最佳拟合曲线 假设输入数据存放在矩阵X中,而回归系数存放在向量w中,那么对于给定的数据X1,预测结果将会通过Y1=X1.T×w给出。如何找出误...

机器学习之预测数值型数据: 回归

本文主要记录本人在学习机器学习过程中的相关代码实现,参考《机器学习实战》 from numpy import * import matplotlib.pyplot as plt def load...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:机器学习中标称型数据和数值型数据的区别
举报原因:
原因补充:

(最多只允许输入30个字)