机器学习中标称型数据和数值型数据的区别

原创 2017年08月29日 10:42:56

这两种数据在监督学习的分类一章经常有说到




标称型:一般在有限的数据中取,而且只存在‘是’和‘否’两种不同的结果(一般用于分类)


数值型:可以在无限的数据中取,而且数值比较具体化,例如4.02,6.23这种值(一般用于回归分析)

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

机器学习样本特征之间的相似性度量总结

在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系...

机器学习常用的分类器比较

传统的机器学习的监督学习分类分类和回归,分类是争对离散的数据,而回归是争对连续的数据,在数据预处理好的基础上要对数据进行预测,通常采用CV交叉验证来进行模型评价和选择。这篇文章通过连续的数据结合skl...

机器学习 标称型和数值型概念

参考: 《Machine Learning in Action》第一部分 分类 ######################################################...

数据集与标注等工具

~~因为不太会使用OpenCV、matlab工具,所以在找一些比较简单的工具。 . .一、NLP标注工具BRATBRAT是一个基于web的文本标注工具,主要用于对文本的结构化标注,用BRAT生成的...

Paper:Learning from Imbalanced Data

论文链接:Learning from Imbalanced Data 一、基本概念 1、类间不平衡 VS. 类内不平衡 类间不平衡:不同类别之间的数据量相差较大。 类内不平衡:某一个类分布成多...

python sort / sorted 和 argsort()

参考: http://www.th7.cn/Program/Python/201501/352195.shtml http://www.aichengxu.com/view/15541 ht...

转自美团技术:机器学习中的数据清洗与特征处理综述&实例详解机器学习如何解决问题

机器学习中的数据清洗与特征处理综述 背景 随着美团交易规模的逐步增大,积累下来的业务数据和交易数据越来越多,这些数据是美团做为一个团购平台最宝贵的财富。通过对这些数据的分析和挖掘,不仅能给美团业...

android 下拉刷新(Swipe-to-Refresh)

android 下拉刷新(Swipe-to-Refresh)参考: ListView 使用(1):http://blog.csdn.net/u012005313/article/details/604...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)