Hadoop经典案例Spark实现(五)——求最大最小值问题,同时在一个任务中求出来。
1、数据准备
eightteen_a.txt
eightteen_b.txt
结果预测
1、数据准备
eightteen_a.txt
102
10
39
109
200
11
3
90
28
eightteen_b.txt
5
2
30
838
10005
结果预测
Max 10005
Min 2
2、MapRedue实现
Map代码
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MaxMinMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
private Text keyText = new Text("Key");
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
String line = value.toString();
if(line.trim().length()>0){
context.write(keyText, new LongWritable(Long.parseLong(line.trim())));
}
}
}
<

本文介绍了如何使用MapReduce和Spark解决求最大最小值的问题。通过Map阶段处理数据,然后在Reduce或Spark的groupByKey阶段进行聚合计算,成功实现了在大数据场景下查找最大值和最小值的目标。
最低0.47元/天 解锁文章
2362

被折叠的 条评论
为什么被折叠?



