Matalb并行:parfor

转载 2015年07月08日 10:18:01

借鉴两篇博客:
http://blog.csdn.net/caozhk/article/details/38234293?utm_source=tuicool
http://blog.csdn.net/duanlangzhuifeng/article/details/17679343
基本概念:
Matlab的parfor并行编程

通常消耗最多计算资源的程序往往是循环。把循环并行化,或者优化循环体中的代码是最常用的加快程序运行速度的思路。
Matlab提供了parfor关键字,可以很方便的在多核机器或集群上实现并行计算。

parfor关键字的使用

由for关键字引导的循环通常为串行运行,如果改为parfor则可以由多个worker以并行方式执行。
parfor可以将n次循环分解为独立不相关的m部分,然后将各部分分别交给一个worker执行。
循环执行的结果应该与n次循环执行的顺序无关。

parfor中的变量类型
简约变量

一般parfor中各次循环对应的运算应该相互独立,但简约操作可以在多次循环内同时对一个变量操作。这种变量称为简约变量。例如下方代码中a就是简约变量。

a = 0;
for i = 1:1000
  a = a+i;
end

简约操作包括 + - * .* & | [,] [;] {,} {;} min max union intersect 。
同一个parfor循环对简约变量的操作必须一致,即必须是同一种简约操作符。而且与操作符的相对位置也必须一致。
简约变量赋值表达式应该满足结合律和交换律。 * [] {} 底层有特殊处理保证结果的正确性。

切片变量

parfor中可能需要读取或写入parfor之外的矩阵,读取写入位置与循环变量相关。这样就需要向worker传输大量的数据。
矩阵如果被Matlab识别为切片变量,则数据可以分段传输到各worker,提高传输效率。
切片变量矩阵的大小是不可在parfor中改变的,且为了保证Matlab识别正确,每次循环中只能读取由同一个索引值索引的切片,如 a[i] a[i+1] 同时出现则a不被识别为切片变量。

循环变量

如上例中的i,表示当前循环的id。

广播变量

在parfor之前赋值,在parfor内只进行读取操作。

临时变量

作用域局限于parfor内,parfor结束后不存在。不影响parfor之前声明的同名变量。

各种变量区分的例子

下例中,parfor中的tmp是临时变量,parfor结束后tmp的值依然是5,不受临时变量的影响。
broadcast是广播变量,每次循环中的值不变。
redued是简约变量,Matlab对其的值将分段由各worker计算后送回主进程处理。
sliced为切片变量,数据传输有优化提升。
i为循环变量。

tmp = 5;
broadcast = 1;
reduced = 0;
sliced = ones(1, 10);
parfor i = 1:10
  tmp = i;
  reduced = reduced + i + broadcast;
  sliced(i) = sliced(i) * i;
end

worker配置

在运行程序之前,需要配置worker。否则如前文所说,parfor循环将以普通for循环的形式运行,无法并行。

单机配置

使用matlabpool命令可以开启关闭本机的并行计算池。
matlabpool n 命令可以打开n个worker。
matlabpool open configname 按照指定配置打开,默认配置为 local 。
程序运行结束后,应该使用 matlabpool close 关闭worker。
配置项的修改可以通过 Parallel -> Manage Cluster Profile 完成。
n的选择:如果有c个cpu核心,通常可以设置为c。如果是远程服务器,为防止服务器响应卡顿,可以设置为 c-1 。对于计算密集型程序,超线程带来的性能提升几乎为0,可以设置为核心数,而不是线程数。

注意事项

循环次数n最好能整除以worker个数m,否则部分worker会分配较多的循环,造成一部分worker闲置一段时间,降低了并行性。
并行运行时各个worker之间会进行通信,要注意大量数据传输带来的性能下降。尤其对于广播变量,如果较大可尝试变为切片变量。

具体使用注意事项:
【使用和关闭】

使用matlabpool 命令启动多个workers,使用parfor指令。自己的电脑上是4核4进程,开启4个workers:

matlabpool 4

关闭时用 matlabpool close

【语法】

parfor的语法和普通的for语法没有区别:

for i = 1:N

f(i);

end

parfor i = 1:N

f(i);

end

【并行】

for 语句是按照i的序列顺序执行的,而parfor是由多个worker同时执行i为不同值的结果

for i = 1:12 fprintf(’ %d’,i); end 的输出为:

1 2 3 4 5 6 7 8 9 10 11 12

parfor i = 1:12 fprintf(’ %d’,i); end的输出为:

2 1 10
4 3 11
6 5 12
8 7 9

【嵌套循环】

parfor是不可以多层嵌套的,比如下面这样:

parfor i = 1:M

parfor j = 1:N

end

end

只有将其中一个改为for:

parfor i = 1:M for i = 1:N ; end end

或者:

for i = 1:M parfor i = 1:N ; end end

但是这样就不能发挥并行的威力,可以这样:

parfor k = 1:M*N

i = mod(k-1, M) + 1;

j = floor(k-1/M) + 1;

end

【限制】

在parfor中执行的语句,如果是写操作,则不能相互访问或者改写不同的i执行的结果。例如

parfor i = 1:12

a(i+1) = a(i) + 1;

end

则是不允许的。因为并行操作并不保证a[i]在a[i+1]之前计算完。

还有

parfor i = 1:12

a(i*2) = i*2;

end

这样的操作也是不被允许的。

parfor中限制:

不可以修改循环变量:

parfor i = 1:N
i = i + 1;
a(i) = i;
end

当写操作时, 矩阵下标的访问只能是i,或者是i加减一个常数。
如果使用嵌套循环的循环变量来引用矩阵,那么必须用直接的下标形式,不可以用表达式:

A = zeros(4, 11);
parfor i = 1:4
for j = 1:10
A(i, j + 1) = i + j;
end
end

可以改成:

A = zeros(4, 11);
parfor i = 1:4
for j = 2:11
A(i, j) = i + j + 1;
end
end

如果在嵌套循环中引用了矩阵,那么在parfor-loop中就不可以再其他地方再使用:

A = zeros(4, 10);
parfor i = 1:4
for j = 1:10
A(i, j) = i + j;
end
disp(A(i, 1))
end

是不允许的。可以改成:

A = zeros(4, 10);
parfor i = 1:4
v = zeros(1, 10);
for j = 1:10
v(j) = i + j;
end
disp(v(1))
A(i, :) = v;
end

MATLAB的parfor

Matlab的parfor并行编程: 通常消耗最多计算资源的程序往往是循环。把循环并行化,或者优化循环体中的代码是最常用的加快程序运行速度的思路。Matlab提供了parfor关键字,可以很方便的...

MATLAB并行:parfor

【使用和关闭】 使用matlabpool 命令启动多个workers,使用parfor指令。自己的电脑上是4核4进程,开启4个workers:     matlabpool 4 关闭时用 matlab...

基於灰度共生矩陣的圖像分割方法研究

http://hi.baidu.com/dandeline8828/item/972eefc782448fd6ee183bd7 所謂圖像分割就是指把圖像分成各具特性的區域,並提取出感興趣目標...
  • rocky69
  • rocky69
  • 2013年06月01日 07:54
  • 1215

一些图像格式转换工具的使用方法(eps2svg with pdf)

工作中要把eps的图形转化为svg的,需要借助一些工具。 首先,eps是Adobe公司开发的的用来印刷打印的图像格式,不是传统的位图,也不完全是矢量图。svg是完全的矢量图。很多工业中使用的印刷图像文...
  • qdbszsj
  • qdbszsj
  • 2017年04月14日 13:47
  • 1245

matlab并行parfor 宏观串行

  • 2014年09月30日 13:03
  • 1KB
  • 下载

【高性能】Matlab的并行计算之parfor

当matlab计算量很大,重复独立的循环计算很多的时候,我们可以使用matlab的并行计算,这里我先试验了parfor并行计算。以下代码仅适合新版的matlab,改编自《实战matlab之并行程序设计...

parfor-- matlab并行计算教程

1 initialize/ close这里讲述的方法仅针对多核机器做并行计算的情况。设机器的CPU核心数量是CoreNum双核机器的CoreNum2,依次类推。CoreNum以不等于核心数量,但是如果...
  • lLYDl
  • lLYDl
  • 2015年09月04日 13:45
  • 2229

matlab中的并行方法与理解(2):parfor中的变量类型

通常消耗最多计算资源的程序往往是循环。把循环并行化,或者优化循环体中的代码是最常用的加快程序运行速度的思路。Matlab提供了parfor关键字,可以很方便的在多核机器或集群上实现并行计算。parfo...
  • q664111
  • q664111
  • 2016年03月01日 21:17
  • 3798

parfor, callback, real-time data reading

rossubscriber和parfor一起用的时候,风味独特。 经测试, 在release mode的时候,parpool的正在启动的时候,rossubscriber会使用callback不断地读入...
  • shukeju
  • shukeju
  • 2016年04月08日 17:22
  • 307

parfor 中sliced array的一些限制

Use Nested Functions and Variables in parfor-LoopsNested FunctionsThe body of a parfor-loop cannot m...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Matalb并行:parfor
举报原因:
原因补充:

(最多只允许输入30个字)