SVM分类task1

原创 2015年07月08日 16:45:56

一、问题描述
任务是利用已有分类方法,如SVM和Ridge Regression对MIRFlickr-25000数据集进行分类实验。具体要求:

  1. 数据集:MIRFlickr-25000 http://press.liacs.nl/mirflickr/
  2. 数据特征:Caffe http://caffe.berkeleyvision.org/
  3. 分类方法:SVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) 和Ridge Regression (Matlab里应该有,如果没有,去Google里搜索)
  4. 评价标准:AUC (area under curve) 和average precision (AP) (注意是分类的AP,不是检索retrieval的AP)
  5. 实验环境:Matlab和Unix
  6. 实验内容:
    6.1 训练数据大小对实验结果的影响;
    6.2 模型参数对实验结果的影响;
    6.3 两个方法的比较结果;
    6.4 每个具体类别的性能

二、探索进程【loading】

2.1 解决思路
image+lable—1—>caffe—2—>libsvm

难点:
*1将图片数据转换为leveldb格式
*2弄清楚caffe源码+sample ——
是否需要修改网络参数、转化特征文件为matlab格式

2.2 环境搭建

2.2.1 libsvm

[setting] matlabR2014+libsvm3.11+Vs2013
[tutorial] 详解http://blog.csdn.net/llydl/article/details/46770941

2.2.2 caffe
[setting] cuda7.0+caffe+vs2013
[installation tutorial]http://blog.csdn.net/happynear/article/details/45372231
[cuda installation tutorial]http://blog.csdn.net/fengbingchun/article/details/44963681

**2.3**libsvm


tic;
close all;
clear;
clc;
format compact;
%% 

% 首先载入数据
 load('data_test.mat');
 load('data_train.mat');
 load('y.mat');

% 选取前ind个数据作为训练集合
ind = 5000;
traindata = data_train(1:ind,:);

testdata = data_test(1:end,:);


% 利用训练集合建立分类模型
for i=1:24
    trainlabel = y(1:ind,i);
    testlabel = y(20001:end,i);
model = svmtrain(trainlabel,traindata,'-s 0 -t 0 -c 1.2 -g 2.8');

% 分类模型model解密
%model
%Parameters = model.Parameters
%Label = model.Label
%nr_class = model.nr_class
%totalSV = model.totalSV
%nSV = model.nSV 

% 利用建立的模型看其在训练集合上的分类效果
[ptrain,acctrain] = svmpredict(trainlabel,traindata,model);

% 预测测试集合标签
[ptest,acctest] = svmpredict(testlabel,testdata,model);

end
%%
toc;

3相关知识学习【loading】
2.3.1 caffe
[tutorial] 1.http://www.ityuedu.com/article/665971707/ (yangqing jia)

observing the output of mnist (lenet_inter_10000)

2.3.2 caffe modle
http://www.cnblogs.com/zzq1989/p/4439429.html

[undo or unread related material]
1.http://blog.csdn.net/thesby/article/details/43538187 caffe各层参数定义
2.http://blog.csdn.net/lien0906/article/details/44652965 最有借鉴意义的:修改源文件跑自己数据
3.http://blog.csdn.net/guoyilin/article/details/42886365 python抽取图片特征
4.http://blog.csdn.net/lingerlanlan/article/details/39400375 抽取任意一张图片特征

版权声明:本文为博主原创文章,未经博主允许不得转载。

深度学习之Caffe(一) 用c++接口提取特征后用SVM分类

深度学习之Caffe(一) 用c++接口提取特征后用SVM分类转载请私信联系博主,未经同意请勿转载。 最近因为老师的要求接触了一点深度学习和caffe的东西,其中一个task是用ResNet网络将...
  • u013921757
  • u013921757
  • 2016年09月27日 17:32
  • 549

Windows+caffe+libsvm对图片数据集的分类

一、问题描述  任务是利用已有分类方法,如SVM和Ridge Regression对MIRFlickr-25000数据集进行分类实验。具体要求: 数据集:MIRFlickr-25000 htt...
  • u014696921
  • u014696921
  • 2016年09月15日 22:32
  • 1486

caffe提取特征用svm进行分类

caffe c++批量抽取特征的方法在[1],但是该方法使用中有几个疑问: 1. 如何转换levelDB 格式为libsvm格式。 2.  ./build/tools/extract_fe...
  • u014696921
  • u014696921
  • 2016年09月15日 22:31
  • 4219

Caffe做分类初步学习以及遇到的一些坑

1.安装 mac下安装caffe可以参考之前的一篇wiki(在mac下安装caffe),当然如果遇到其他问题请自行google。 对于各种linux系统,网上的教程已经非常多了。 2.caffe...
  • u014696921
  • u014696921
  • 2016年09月15日 22:33
  • 3535

matlab自带各种分类器的使用示例

目前了解到的MATLAB中分类器有:K近邻分类器,随机森林分类器,朴素贝叶斯,集成学习方法,鉴别分析分类器,支持向量机。现将其主要函数使用方法总结如下,更多细节需参考MATLAB 帮助文件。 设 ...
  • u014114990
  • u014114990
  • 2016年04月05日 18:50
  • 14691

Windows+caffe+libsvm对图片数据集的分类

一、问题描述  任务是利用已有分类方法,如SVM和Ridge Regression对MIRFlickr-25000数据集进行分类实验。具体要求: 数据集:MIRFlickr-25000 http:/...
  • liu1194397014
  • liu1194397014
  • 2015年08月24日 10:23
  • 1256

用SVM对自己的数据分类

参考http://blog.csdn.net/carson2005/article/details/6547250  数据和标签格式还是和上一篇Adaboost一样的 #include #inc...
  • wd1603926823
  • wd1603926823
  • 2016年06月17日 11:35
  • 2347

SVM分类方法

http://blog.csdn.net/v_july_v/article/details/7624837 1、要对特征值Xi进行分类,可设决策函数是所有Xi的函数,分类函数是这样的: ...
  • lijil168
  • lijil168
  • 2017年03月27日 23:12
  • 298

SVM分类task1

[loading]…here serve as a recorder caffe http://www.liuhaihua.cn/archives/15929.html
  • lLYDl
  • lLYDl
  • 2015年07月08日 16:45
  • 438

Caffe做分类初步学习以及遇到的一些坑

1.安装 mac下安装caffe可以参考之前的一篇wiki(在mac下安装caffe),当然如果遇到其他问题请自行google。 对于各种linux系统,网上的教程已经非常多了。 2...
  • csyanbin
  • csyanbin
  • 2016年03月13日 20:43
  • 3698
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:SVM分类task1
举报原因:
原因补充:

(最多只允许输入30个字)