关闭

SVM分类task1

标签: svm
365人阅读 评论(0) 收藏 举报
分类:

一、问题描述
任务是利用已有分类方法,如SVM和Ridge Regression对MIRFlickr-25000数据集进行分类实验。具体要求:

  1. 数据集:MIRFlickr-25000 http://press.liacs.nl/mirflickr/
  2. 数据特征:Caffe http://caffe.berkeleyvision.org/
  3. 分类方法:SVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) 和Ridge Regression (Matlab里应该有,如果没有,去Google里搜索)
  4. 评价标准:AUC (area under curve) 和average precision (AP) (注意是分类的AP,不是检索retrieval的AP)
  5. 实验环境:Matlab和Unix
  6. 实验内容:
    6.1 训练数据大小对实验结果的影响;
    6.2 模型参数对实验结果的影响;
    6.3 两个方法的比较结果;
    6.4 每个具体类别的性能

二、探索进程【loading】

2.1 解决思路
image+lable—1—>caffe—2—>libsvm

难点:
*1将图片数据转换为leveldb格式
*2弄清楚caffe源码+sample ——
是否需要修改网络参数、转化特征文件为matlab格式

2.2 环境搭建

2.2.1 libsvm

[setting] matlabR2014+libsvm3.11+Vs2013
[tutorial] 详解http://blog.csdn.net/llydl/article/details/46770941

2.2.2 caffe
[setting] cuda7.0+caffe+vs2013
[installation tutorial]http://blog.csdn.net/happynear/article/details/45372231
[cuda installation tutorial]http://blog.csdn.net/fengbingchun/article/details/44963681

**2.3**libsvm


tic;
close all;
clear;
clc;
format compact;
%% 

% 首先载入数据
 load('data_test.mat');
 load('data_train.mat');
 load('y.mat');

% 选取前ind个数据作为训练集合
ind = 5000;
traindata = data_train(1:ind,:);

testdata = data_test(1:end,:);


% 利用训练集合建立分类模型
for i=1:24
    trainlabel = y(1:ind,i);
    testlabel = y(20001:end,i);
model = svmtrain(trainlabel,traindata,'-s 0 -t 0 -c 1.2 -g 2.8');

% 分类模型model解密
%model
%Parameters = model.Parameters
%Label = model.Label
%nr_class = model.nr_class
%totalSV = model.totalSV
%nSV = model.nSV 

% 利用建立的模型看其在训练集合上的分类效果
[ptrain,acctrain] = svmpredict(trainlabel,traindata,model);

% 预测测试集合标签
[ptest,acctest] = svmpredict(testlabel,testdata,model);

end
%%
toc;

3相关知识学习【loading】
2.3.1 caffe
[tutorial] 1.http://www.ityuedu.com/article/665971707/ (yangqing jia)

observing the output of mnist (lenet_inter_10000)

2.3.2 caffe modle
http://www.cnblogs.com/zzq1989/p/4439429.html

[undo or unread related material]
1.http://blog.csdn.net/thesby/article/details/43538187 caffe各层参数定义
2.http://blog.csdn.net/lien0906/article/details/44652965 最有借鉴意义的:修改源文件跑自己数据
3.http://blog.csdn.net/guoyilin/article/details/42886365 python抽取图片特征
4.http://blog.csdn.net/lingerlanlan/article/details/39400375 抽取任意一张图片特征

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:5749次
    • 积分:158
    • 等级:
    • 排名:千里之外
    • 原创:8篇
    • 转载:2篇
    • 译文:2篇
    • 评论:0条
    文章分类