SVM分类task1

原创 2015年07月08日 16:45:56

一、问题描述
任务是利用已有分类方法,如SVM和Ridge Regression对MIRFlickr-25000数据集进行分类实验。具体要求:

  1. 数据集:MIRFlickr-25000 http://press.liacs.nl/mirflickr/
  2. 数据特征:Caffe http://caffe.berkeleyvision.org/
  3. 分类方法:SVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) 和Ridge Regression (Matlab里应该有,如果没有,去Google里搜索)
  4. 评价标准:AUC (area under curve) 和average precision (AP) (注意是分类的AP,不是检索retrieval的AP)
  5. 实验环境:Matlab和Unix
  6. 实验内容:
    6.1 训练数据大小对实验结果的影响;
    6.2 模型参数对实验结果的影响;
    6.3 两个方法的比较结果;
    6.4 每个具体类别的性能

二、探索进程【loading】

2.1 解决思路
image+lable—1—>caffe—2—>libsvm

难点:
*1将图片数据转换为leveldb格式
*2弄清楚caffe源码+sample ——
是否需要修改网络参数、转化特征文件为matlab格式

2.2 环境搭建

2.2.1 libsvm

[setting] matlabR2014+libsvm3.11+Vs2013
[tutorial] 详解http://blog.csdn.net/llydl/article/details/46770941

2.2.2 caffe
[setting] cuda7.0+caffe+vs2013
[installation tutorial]http://blog.csdn.net/happynear/article/details/45372231
[cuda installation tutorial]http://blog.csdn.net/fengbingchun/article/details/44963681

**2.3**libsvm


tic;
close all;
clear;
clc;
format compact;
%% 

% 首先载入数据
 load('data_test.mat');
 load('data_train.mat');
 load('y.mat');

% 选取前ind个数据作为训练集合
ind = 5000;
traindata = data_train(1:ind,:);

testdata = data_test(1:end,:);


% 利用训练集合建立分类模型
for i=1:24
    trainlabel = y(1:ind,i);
    testlabel = y(20001:end,i);
model = svmtrain(trainlabel,traindata,'-s 0 -t 0 -c 1.2 -g 2.8');

% 分类模型model解密
%model
%Parameters = model.Parameters
%Label = model.Label
%nr_class = model.nr_class
%totalSV = model.totalSV
%nSV = model.nSV 

% 利用建立的模型看其在训练集合上的分类效果
[ptrain,acctrain] = svmpredict(trainlabel,traindata,model);

% 预测测试集合标签
[ptest,acctest] = svmpredict(testlabel,testdata,model);

end
%%
toc;

3相关知识学习【loading】
2.3.1 caffe
[tutorial] 1.http://www.ityuedu.com/article/665971707/ (yangqing jia)

observing the output of mnist (lenet_inter_10000)

2.3.2 caffe modle
http://www.cnblogs.com/zzq1989/p/4439429.html

[undo or unread related material]
1.http://blog.csdn.net/thesby/article/details/43538187 caffe各层参数定义
2.http://blog.csdn.net/lien0906/article/details/44652965 最有借鉴意义的:修改源文件跑自己数据
3.http://blog.csdn.net/guoyilin/article/details/42886365 python抽取图片特征
4.http://blog.csdn.net/lingerlanlan/article/details/39400375 抽取任意一张图片特征

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

SVM入门(二)线性分类器Part 1

线性分类器(一定意义上,也可以叫做感知机) 是最简单也很有效的分类器形式.在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念.   用一个二维空间里仅有两类样本的分类问题来...

线性分类器SVM(1)

综述我们提出一个更加有效地算法来处理图片分类。这个算法也是神经网络和卷积神经网络的基础。这个方法有两个组件:1、得分函数:将数据映射到类分数,2、损失函数:来计算预测分数和真实函数之间的差距。我们会把...

SVM入门(四)线性分类器的求解——问题的描述Part1

上节说到我们有了一个线性分类函数,也有了判断解优劣的标准——即有了优化的目标,这个目标就是最大化几何间隔,但是看过一些关于SVM的论文的人一定记得什么优化的目标是要最小化||w||这样的说法,这是怎么...

三个角度看SVM(1)——最大间隔分类器

“横看成岭侧成峰,远近高低各不同。”支持向量机(Support Vector Machine, SVM)作为一个被广泛应用的有监督机器学习算法,网络上对它的介绍数不胜数,其中更有不少好文佳作。本文与它...

SVM多类分类方法(1v1,1v other 等)

from:http://blog.sina.com.cn/s/blog_5eef0840010147pa.html SVM多类分类方法的实现根据其指导思想大致有两种: (1)将多类问题...
  • hermito
  • hermito
  • 2016年07月01日 14:43
  • 940

线性SVM分类器

  • 2015年02月28日 12:43
  • 609KB
  • 下载

利用Hog特征和SVM分类器进行行人检测

之前介绍过Hog特征(http://blog.csdn.net/carson2005/article/details/7782726),也介绍过SVM分类器(http://blog.csdn.net/...

基于SVM的文本分类器数据挖掘

  • 2016年01月12日 17:30
  • 935KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:SVM分类task1
举报原因:
原因补充:

(最多只允许输入30个字)