[机器学习] 一些题目

原创 2016年08月30日 22:09:20

类域界面方程法中,不能求【线性不可分情况】下分类问题近似或精确解的方法是?(D)

A 伪逆法-径向基(RBF)神经网络的训练算法,就是解决线性不可分的情况

B 基于二次准则的H-K算法:最小均方差准则下求得权矢量,二次准则解决非线性问题

C 势函数法-非线性

D 感知器算法-线性分类算法

 

Fisher 线性判别函数的求解过程是将N维特征矢量投影在()中进行求解?

线性,当然一维

 

影响聚类算法效果的主要原因有:(ABC )

A 特征选取

B 模式相似性测度

C 分类准则

D 已知类别的样本质量------------聚类算法是无监督训练,若已知类别的样本则是监督学习的内容

 

下面说法正确的是?

 

梯度下降有时会陷于局部极小值,但EM算法不会。错误

SVM对噪声鲁棒。错误

当训练数据较多时更容易发生过拟合。错误

给定n个数据点,如果其中一半用于训练,另一半用于测试,则训练误差和测试误差之间的差别会随着n的增加而减小。正确

 

梯度下降就是对参数求偏导,会陷入局部最小值,

EM就是最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,用于含有隐变量(latent variable)的概率参数模型的最大似然估计或极大后验概率估计。比如先假定男生身高平均1.7 方差0.1 然后求将ABCDEFG归类,分到1.7左边右边,重新求方差,反复迭代,直到不再变化。

训练数据少才会过拟合。

训练数据多会减少偏差。

 

考虑两个分类器:1)核函数取二次多项式的SVM分类器和2)没有约束的高斯混合模型(每个类别为一个高斯模型)。我们对R2空间的点进行两类分类。假设数据完全可分,SVM分类器中不加松弛惩罚项,并且假设有足够多的训练数据来训练高斯模型的协方差。下面说法正确的是?

SVMVC维大于高斯混合模型的VC
SVMVC维小于高斯混合模型的VC ---正确
两个分类器的结构风险值相同
这两个分类器的VC维相同

 

VC维(Vapnik-Chervonenkis Dimension)的概念是为了研究学习过程一致收敛的速度和推广性,由统计学理论定义的有关函数集学习性能的一个重要指标。VC维反映了函数集的学习能力,VC维越大则学习机器越复杂(容量越大):对一个指示函数集,如果存在H个样本能够被函数集中的函数按所有可能的2H次方种形式分开,则称函数集能够把H个样本打散;函数集的VC维就是它能打散的最大样本数目H

所谓混合高斯模型(GMM)就是指对样本的概率密度分布进行估计,而估计采用的模型(训练模型)是几个高斯模型的加权和(具体是几个要在模型训练前建立好)。每个高斯模型就代表了一个类(一个Cluster)。对样本中的数据分别在几个高斯模型上投影,就会分别得到在各个类上的概率。然后我们可以选取概率最大的类所为判决结果。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

15道机器学习面试题,让你顺利得到offer!

DT时代,机器学习作为一门热门的科学研究项目,也成为了众多IT人想要进修或从事的领域。现在,大圣众包威客平台(www.dashengzb.cn)便为大家搜罗15道或常见或棘手的机器学习面试题目,让欲从...

机器学习题目汇总三

1、以下哪些方法不可以直接来对文本分类? 正确答案: A A、Kmeans B、决策树 C、支持向量机 D、KNN分类不同于聚类。 对于A,Kmeans是聚类方法,典型的无监督学习方法。...
  • will130
  • will130
  • 2016年02月21日 17:44
  • 1581

机器学习题目汇总一

1、一监狱人脸识别准入系统用来识别待进入人员的身份,此系统一共包括识别4种不同的人员:狱警、小偷、送餐员、其他,下面哪种学习方法最适合此种应用需求?正确答案: B A、二分类问题 B、多分类问题...
  • will130
  • will130
  • 2016年02月20日 17:41
  • 1374

機器學習基石(Machine Learning Foundations) 机器学习基石 课后习题链接汇总

大家好,我是Mac Jiang,很高兴您能在百忙之中阅读我的博客!这个专题我主要讲的是Coursera-台湾大学-機器學習基石(Machine Learning Foundations)的课后习题解答...

机器学习笔试题目----网易2016春招

2016年3月23日参加了网易机器学习岗的笔试,然后又被鄙视了。因为不允许截屏和拍照,只凭记忆记录了一些问题。1、常见的生成式模型和判别式模型有哪些? 生成式模型:HMM、朴素贝叶斯 判别式模型:...

不容错过的50道机器学习面试题及答案

转载自http://www.ppvke.com/Blog/archives/381751.什么是机器学习机器学习是为了应对系统程序设计,属于计算机科学类的学科,它能根据经验进行自动学习和提高。例如:一...
  • jiede1
  • jiede1
  • 2017年03月04日 14:20
  • 2225

数据挖掘(机器学习)面试--SVM面试常考问题

应聘数据挖掘工程师或机器学习工程师,面试官经常会考量面试者对SVM的理解。 以下是我自己在准备面试过程中,基于个人理解,总结的一些SVM面试常考问题(想到会再更新),如有错漏,请批评指正。(大神请忽视...
  • szlcw1
  • szlcw1
  • 2016年08月20日 10:15
  • 7925

机器学习项目实战之用户流失预警

from __future__ import division import pandas as pd import numpy as npchurn_df = pd.read_csv("D:\\te...

百度2016研发工程师笔试题(一)+详解

1.软件项目存储于/ftproot,允许apache用户修改所有程序,设置访问权限的指令?A.chmod apache-R/ftproot B.chmod apache/ftproot C.chgrp...

机器学习-组合算法总结

组合模型组合模型一般要比单个算法要好,下面简单的介绍下Bootstraping, Bagging, Boosting, AdaBoost, RandomForest 和Gradient boostin...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[机器学习] 一些题目
举报原因:
原因补充:

(最多只允许输入30个字)