{joseph问题}

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。
为了讨论方便,先把问题稍微改变一下,并不影响原意:

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。

我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
  k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2
并且从k开始报0。

现在我们把他们的编号做一下转换:
k     --> 0
k+1   --> 1
k+2   --> 2
...
...
k-2   --> n-2
k-1   --> n-1

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1

由于是逐级递推,不需要保存每个f[i],程序也是异常简单:

#include <stdio.h>
int main()
{
  int n, m, i, s=0;
  printf ("N M = "); scanf("%d%d", &n, &m);
  for (i=2; i<=n; i++) s=(s+m)%i;
  printf ("The winner is %d\n", s+1);
}

这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执行效率。


-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


以下转自http://blog.sina.com.cn/s/blog_7cfbb10f0100qyn0.html

问题描述:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列,求最后一个出列人的编号。

递归的力量:优化到O(N)

在Donald E. Knuth的《具体数学》中,对m=2的情况使用了递归的解决方法,并推出了一个常数表达式,使得此种情况下,算法的复杂度为常量。同时,这种思路也可以应用于n>2 的情况,但无法得出常数表达式,推广后的递归算法具体的思路如下:

当n个人围成一圈并以m为步长第一次报数时,第m个人出列,此时就又组成了一个新的,人数为n-1的约瑟夫环,要求n个人的约瑟夫环问题的解,就依赖于求n-1个人的约瑟夫问题的解,要求n-2个人的约瑟夫问题的解,则依赖于求n-2个人的约瑟夫换问题的解,依次类推,直至求1个人的时候,该问题的解。

让我们回到问题的原始描述中,m是一个固定的值,即步长;n为一个圈的总人数,k为这个圈第一个报数的人的编号,显然,n在每次递归过程中会减1,而k则可以由m,n来唯一确定,这样的话,当n=1的时候,我们所确定的当前的k值,就是我们所要求的解。

那么,我们可列出如下的递归式:

P(n, m, k)=1 (i = 1)

P(n, m, k)=(P(i - 1, m, k ) + m - 1) % n + 1; (i > 1)

(此处m需先减1是为了让模n的值不为0)

这样,我们可以很轻松的将此算法具体实现。这里给出它的递推表示法以方便进下一步讨论(C言描述):

 

约瑟夫问题的数学方法 long  Josephus( long  n, long  m, long  k)     //参数分别为:人数,出圈步长,起使报数位置,
约瑟夫问题的数学方法
    for (long = 1<= n; i++)
约瑟夫问题的数学方法        
= (k + - 1% + 1
约瑟夫问题的数学方法    
return k; //返回最后一人的位置
约瑟夫问题的数学方法 
}

 

显然,这个算法的复杂度仅为O(n),相比模拟算法,有了很大的改进。

序列三:k+1, k+2, k+3, …, n-2, n-1, n, 1, …, k-2, k-1

序列四: 1 , 2 , 3 , …,n-k-2, n-k-1, n-k, n-k+1, …,n-2, n-1

又∵ k=m%n;
∴ x' = x+k = x+ m%n ; 而 x+ m%n 可能大于n
∴x'= (x+ m%n)%n = (x+m)%n

证毕

再优化:与人数无关
上面的算法相比最初的模拟算法效率已经大大提升了,那么,该算法还有改进的余地么?
事实上,如果我们观察上述算法中的变量k,他的初始值为第一个出圈人的编号,但在循环的过程中,我们会发现它常常处在一种等差递增的状态,我来看这个式子:k = (k + m - 1) % i + 1,可以看出,当i比较大而k+m-1比较小的时候,k就处于一种等差递增的状态,这个等差递增的过程并不是必须的,可以跳过。
我们设一中间变量x,列出如下等式:
k + m * x – 1 = i + x
解出x,令k = k + m * x,将i + x直接赋值给 i,这样就跳过了中间共x重的循环,从而节省了等差递增的时间开销。
可是其中求出来的x + i可能会超过n,这样的结果事实上已经告诉我们此时可以直接结束算法了,即:
k = k + m * (n - i) ;
i = n;
结束。
另外对于m = 1的情况可以单独讨论:
当k == 1时,最终结果就是n;
当k != 1时,最终结果就是(k + n - 1) % n。
整个算法的C语言描述如下:

 

约瑟夫问题的数学方法 long  Josephus(  long  n,  long  m,  long  ) //分别为:人数,出圈步长,起使报数位置, 
约瑟夫问题的数学方法
    if (m == 1)
约瑟夫问题的数学方法        
= == 1 ? (k + - 1% n;
约瑟夫问题的数学方法            
else{
约瑟夫问题的数学方法                
for (long = 1<= n; i++){
约瑟夫问题的数学方法                    
if ((k + m) < i){
约瑟夫问题的数学方法                        
= (i - + 1/ (m - 1- 1;
约瑟夫问题的数学方法                        
if (i + < n){
约瑟夫问题的数学方法                            
= + x;
约瑟夫问题的数学方法                            
= (k + * x);
约瑟夫问题的数学方法                         }

约瑟夫问题的数学方法                        
else{
约瑟夫问题的数学方法                            
= + * (n - i) ;
约瑟夫问题的数学方法                            
= n;
约瑟夫问题的数学方法                         }
 
约瑟夫问题的数学方法                    }

约瑟夫问题的数学方法                   
= (k + - 1% + 1;
约瑟夫问题的数学方法                }

约瑟夫问题的数学方法           }

约瑟夫问题的数学方法     
return k; //返回最后一人的位置
约瑟夫问题的数学方法 
}


该算法的算法复杂度在m<n时已经与一个圈中的人数n没有关系了,即使在n=2000000000,m=3,k=1的情况下,也只做了54次循环,事实上,大多数的情况都是m<n,且m相对来说很小,此时,这个算法的复杂度仅为O(m);但当而m>=n时,用方程求出的值不能减少循环重数,算法复杂度仍为O(n)。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值