POJ并查集的题目汇总

转载 2012年03月23日 21:46:48

POJ1611 The suspects题目描述:

有很多组学生,在同一个组的学生经常会接触,也会有新的同学的加入。但是SARS是很容易传染的,只要在改组有一位同学感染SARS,那么该组的所有同学都被认为得了SARS。现在的任务是计算出有多少位学生感染SARS了。假定编号为0的同学是得了SARS的。

解题思路---->显然并查集了。并查集的详细解释在可以点击 并查集(不相交集合)进行学习。采用num[]存储该集合中元素个数,并在集合合并时更新num[]即可。然后找出0所在的集合的根节点x,因此,num[x]就是answer了。

Code highlighting produced by Actipro CodeHighlighter (freeware)http://www.CodeHighlighter.com/-->#include <stdio.h>//by ktyanny
#include <iostream>
using namespace std;

const int MAXN = 30001; /*结点数目上线*/
int pa[MAXN];    /*p[x]表示x的父节点*/
int rank[MAXN];    /*rank[x]是x的高度的一个上界*/
int num[MAXN];/*num[]存储该集合中元素个数,并在集合合并时更新num[]即可*/

void make_set(int x)
{/*创建一个单元集*/
    pa[x] = x;
    rank[x] = 0;
    num[x] = 1;
}

int find_set(int x)
{/*带路径压缩的查找*/
    /*保存待查找的数*/
    int r = x, temp;
    /*找到根节点*/
    while(pa[r] != r) r = pa[r];
    while(x != r)
    {
        temp = pa[x];
        pa[x] = r;
        x = temp;
    }
    return x;
    //if(x != pa[x]) //注释掉的其实也是可以的,不过不想用递归来做啦
    //    pa[x] = find_set(pa[x]);
    //return pa[x];
}

/*按秩合并x,y所在的集合*/
void union_set(int x, int y)
{
    x = find_set(x);
    y = find_set(y);
    if(x == y)return ;
    if(rank[x] > rank[y])/*让rank比较高的作为父结点*/
    {
        pa[y] = x;
        num[x] += num[y];
    }
    else 
    {
        pa[x] = y;
        if(rank[x] == rank[y])
            rank[y]++;
        num[y] += num[x];
    }
}

//answer to 1611 
int main()
{
    int n, m, x, y, i, t, j;
    while(scanf("%d%d", &n, &m))
    {
        if(m==n && n == 0) break;
        if(m == 0)
        {
            cout << "1\n"; continue;
        }
        for(i = 0; i < n; i++)
            make_set(i);
        for(i = 0; i < m; i++)
        {
            scanf("%d", &t);
            scanf("%d", &x);
            for(j = 1; j < t; j++){
                scanf("%d", &y);
                union_set(x, y);
                x = y;
            }
        }
        x = find_set(0);/*找到0所在的树的树根*/
        //int ans = 0;
        //for(i = 0; i < n; i++)
        //    if(pa[i] == x)
        //        ans++;
        //cout << ans << endl;
        cout << num[x] << endl;
    }
    return 0;
}


POJ 2542 Ubiquitous Religions

  题目描述:

世界上宗教何其多。假设你对自己学校的学生总共有多少种宗教信仰很感兴趣。学校有n个学生,但是你不能直接问学生的信仰,不然他会感到很不舒服的。有另外一个方法是问m对同学,是否信仰同一宗教。根据这些数据,相信聪明的你是能够计算学校最多有多少种宗教信仰的。(好,不罗嗦那么多了)

  解题思路---->显然并查集了。并查集的详细解释在可以点击 并查集(不相交集合)进行学习。思路可以很清晰的,一开始假设大家都各自信仰一个宗教,那么总的数目ans就是学生数目,每当发现有一对学生信仰同一个宗教,那么ans--;

Code highlighting produced by Actipro CodeHighlighter (freeware)http://www.CodeHighlighter.com/-->#include <stdio.h>
#include <iostream>
using namespace std;

const int MAXN = 50005; /*结点数目上线*/
int pa[MAXN];    /*p[x]表示x的父节点*/
int rank[MAXN];    /*rank[x]是x的高度的一个上界*/
int n, ans; 

void make_set(int x)
{/*创建一个单元集*/
    pa[x] = x;
    rank[x] = 0;
}

int find_set(int x)
{/*带路径压缩的查找*/
    if(x != pa[x])
        pa[x] = find_set(pa[x]);
    return pa[x];
}

/*按秩合并x,y所在的集合*/
void union_set(int x, int y)
{
    x = find_set(x);
    y = find_set(y);
    if(x == y)return ;
    ans--;    //统计
    if(rank[x] > rank[y])/*让rank比较高的作为父结点*/
    {
        pa[y] = x;
    }
    else 
    {
        pa[x] = y;
        if(rank[x] == rank[y])
            rank[y]++;
    }
}
//answer to 2524
int main()
{
    int m, i, j = 1, x, y;
    while(scanf("%d%d", &n, &m))
    {
        if(n == m && m == 0) break;
        for(i = 1; i <= n; i++)
            make_set(i);
        ans = n;
        for(i = 0; i < m; i++)
        {
            scanf("%d%d", &x, &y);
            union_set(x, y);
        }
        printf("Case %d: %d\n", j, ans);
        j++;
    }
    return 0;
}


原文地址:http://www.cnblogs.com/ktyanny/archive/2009/12/09/1620304.html

POJ 1182 食物链
http://acm.pku.edu.cn/JudgeOnline/problem?id=1182
题目告诉有3种动物,互相吃与被吃,现在告诉你m句话,其中有真有假,叫你判断假的个数(如果前面没有与当前话冲突的,即认为其为真话)
这题有几种做法,我以前的做法是每个集合(或者称为子树,说集合的编号相当于子树的根结点,一个概念)中的元素都各自分为A, B, C三类,在合并时更改根结点的种类,其他点相应更改偏移量。但这种方法公式很难推,特别是偏移量很容易计算错误。
下面来介绍一种通用且易于理解的方法:
首先,集合里的每个点我们都记录它与它这个集合(或者称为子树)的根结点的相对关系relation。0表示它与根结点为同类,1表示它吃根结点,2表示它被根结点吃。
那么判断两个点a, b的关系,我们令p = Find(a), q = Find(b),即p, q分别为a, b子树的根结点。
1. 如果p != q,说明a, b暂时没有关系,那么关于他们的判断都是正确的,然后合并这两个子树。这里是关键,如何合并两个子树使得合并后的新树能保证正确呢?这里我们规定只能p合并到q(刚才说过了,启发式合并的优化效果并不那么明显,如果我们用启发式合并,就要推出两个式子,而这个推式子是件比较累的活…所以一般我们都规定一个子树合到另一个子树)。那么合并后,p的relation肯定要改变,那么改成多少呢?这里的方法就是找规律,列出部分可能的情况,就差不多能推出式子了。这里式子为 : tree[p].relation = (tree[b].relation – tree[a].relation + 2 + d) % 3; 这里的d为判断语句中a, b的关系。还有个问题,我们是否需要遍历整个a子树并更新每个结点的状态呢?答案是不需要的,因为我们可以在Find()函数稍微修改,即结点x继承它的父亲(注意是前父亲,因为路径压缩后父亲就会改变),即它会继承到p结点的改变,所以我们不需要每个都遍历过去更新。
2. 如果p = q,说明a, b之前已经有关系了。那么我们就判断语句是否是对的,同样找规律推出式子。即if ( (tree[b].relation + d + 2) % 3 != tree[a].relation ), 那么这句话就是错误的。
3. 再对Find()函数进行些修改,即在路径压缩前纪录前父亲是谁,然后路径压缩后,更新该点的状态(通过继承前父亲的状态,这时候前父亲的状态是已经更新的)。
核心的两个函数为:
int Find(int x)
{
int temp_p;
if (tree[x].parent != x)
{
// 因为路径压缩,该结点的与根结点的关系要更新(因为前面合并时可能还没来得及更新).
temp_p = tree[x].parent;
tree[x].parent = Find(tree[x].parent);
// x与根结点的关系更新(因为根结点变了),此时的temp_p为它原来子树的根结点.
tree[x].relation = (tree[x].relation + tree[temp_p].relation) % 3;
}
return tree[x].parent;
}

void Merge(int a, int b, int p, int q, int d)
{
// 公式是找规律推出来的.
tree[p].parent = q; // 这里的下标相同,都是tree[p].
tree[p].relation = (tree[b].relation – tree[a].relation + 2 + d) % 3;
}

而这种纪录与根结点关系的方法,适用于几乎所有的并查集判断关系(至少我现在没遇到过不适用的情况…可能是自己做的还太少了…),所以向大家强烈推荐~~

搞定了食物链这题,基本POJ上大部分基础并查集题目就可以顺秒了,这里仅列个题目编号: POJ 1308 1611 1703 1984 1986(LCA Tarjan算法 + 并查集) 1988 2236 2492 2524。

下面来讲解几道稍微提高点的题目:
POJ 1456 Supermarket
http://acm.pku.edu.cn/JudgeOnline/problem?id=1456
这道题贪心的思想很明显,不过O(n^2)的复杂度明显不行,我们可以用堆进行优化,这里讲下并查集的优化方法(很巧妙)。我们把连续的被占用的区间看成一个集合(子树),它的根结点为这个区间左边第一个未被占用的区间。
先排序,然后每次判断Find(b[i])是否大于0,大于0说明左边还有未被占用的空间,则占用它,然后合并(b[i], Find(b[i]) – 1)即可。同样这里我们规定只能左边的子树合并到右边的子树(想想为什么~~)。

POJ 1733 Parity game
http://acm.pku.edu.cn/JudgeOnline/problem?id=1733
这题同样用类似食物链的思想。
首先我们先离散化,因为原来的区间太大了(10^9),我们可以根据问题数目离散成(10^4)。我们要理解,这里的离散化并不影响最终的结果,因为区间里1的奇偶个数与区间的大小无关(这句话有点奇怪,可以忽略…),然后每次输入a, b,我们把b++,如果他俩在一个集合内,那么区间[a, b]里1的个数相当于b.relation ^ a.relation,判断对错即可。如果不在一个集合内,合并集合(这里我们规定根结点小的子树合并根结点大的,所以要根据不同情况推式子),修改子树的根结点的状态,子树的其他结点状态通过Find()函数来更新。

hdu 3038 How Many Answers Are Wrong
http://acm.hdu.edu.cn/showproblem.php?pid=3038
上面那题的加强版,不需要离散化,因为区间的和与区间的大小有关(和上面的那句话对比下,同样可以忽略之…),做法与上面那题差不多,只是式子变了,自己推推就搞定了。但这题还有个条件,就是每个点的值在[0, 100]之间,那么如果a, b不在一个子树内,我们就合并,但在合并之前还要判断合并后会不会使得区间的和不合法,如果会说明该合并是非法的,那么就不合并,同样认为该句话是错误的。

POJ 1417 True Liars(难)
http://acm.pku.edu.cn/JudgeOnline/problem?id=1417
并查集 + DP(或搜索)。
题目中告诉两种人,一种只说真话,一种只说假话。然后告诉m条语句,问是否能判断哪些人是只说真话的那类人。
其实并查集部分跟食物链还是相似,而且种类变少了一种,更容易了。我们可以通过并查集把有关系的一些人合并到一个集合内(具体方法参见食物链讲解)。
现在的问题转化为,有n个集合,每个集合都有a, b连个数字,现在要求n个集合中各跳出一个数(a或者b),使得他们之和等于n1(说真话的人数)。而这个用dp可以很好的解决,用f[i][j]表示到第i个集合和为j个的情况数,我们还用过pre[i][j]记录当前选的是a还是b,用于后面判断状态。方程为f[i][j] = f[i – 1][j – a] + f[i – 1][j – b], j >= a, j >= b。如果最后f[n][n1] == 1说明是唯一的情况,输出该情况,否则输出 “no”(多解算no)
注意点 :
1. 这题的m, n1, n2都有可能出现0,可以特殊处理,也可以一起处理。
2. 按上面的dp写法,f[i][j]可能会很大,因为n可以达到三位数。其实我们关心的只是f[i][j] 等于0,等于1,大于1三种情况,所以当f[i][j] > 1时,我们都让它等于2即可。

POJ 2912 Rochambeau(难)
http://acm.pku.edu.cn/JudgeOnline/problem?id=2912
Baidu Star 2006 Preliminary的题目,感觉出的很好,在并查集题目中算是较难的了。其实这题跟食物链完全一个磨子,同样三类食物,同样的互相制约关系。所以食物链代码拿过来改都不需要改。但这题有个judge,他可以出任意手势。于是我们的做法是,枚举每个小孩为judge,判断他为judge时在第几句话出错err[i](即到第几句话能判断该小孩不是judge)。
1. 如果只有1个小孩是judge时全部语句都是正确的,说明该小孩是judge,那么判断的句子数即为其他小孩的err[i]的最大值。如果
2. 如果每个小孩的都不是judge(即都可以找到出错的语句),那么就是impossible。
3. 多于1个小孩是judge时没有找到出错的语句,就是Can not determine。

ZOJ 3261 Connections in Galaxy War
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3563

原文网址:http://hi.baidu.com/czyuan_acm/home

并查集的几道题目

先从最简单的开始: 题意: 一共n个强盗,m条线索,输出有多少个独立团伙(同伙的同伙是同伙,老鼠的儿子会打洞) 样例输入: 10 9 1 2 3 4 5 2 4 6 2 6 8 7 9 7 1 6 2...
  • Triose
  • Triose
  • 2015年08月11日 16:06
  • 1515

并查集训练题解(A-E)

并查集

并查集拓展和技巧(题目集)

HDU 1811 Rank of Tetris 并查集+拓扑排序利用并查集将实力相同的点缩成一个点再利用拓扑排序模板题 HDU 3938 Portal 并查集+离线输出对Kruskal思...
  • moep0
  • moep0
  • 2016年10月10日 16:02
  • 254

并查集(小米面试题求朋友圈的个数)

(一)并查集的引入 以小米的这道题为例      并查集定义:并查集实际上是右一个数组实现的,这个数组比较特殊,最开始将数组的每一个数据看成一个单独的集合,用-1表示。然后根据题目要求1和2可以合并...

并查集经典题目

还是先看两道题: 试题描述 俗话说得好,敌人的敌人就是朋友。 现在有n个人,编号1至n,初始互不相识。接下来有m个操作,操作分为两种: (1)检查x号和y号是否...

并查集专题【完结】

并查集专题整理

POJ并查集的题目汇总

POJ1611 The suspects题目描述: 有很多组学生,在同一个组的学生经常会接触,也会有新的同学的加入。但是SARS是很容易传染的,只要在改组有一位同学感染SARS,那么该组的所有同...

POJ并查集小结(转)

并查集小结 并查集大体分为三个:普通的并查集,带种类的并查集,扩展的并查集(主要是必须指定合并时的父子关系,或者统计一些数据,比如此集合内的元素数目。) POJ-1182 经典的种类并查...
  • shahdza
  • shahdza
  • 2011年07月06日 09:04
  • 6153

【并查集题目总结】

【并查集题目总结】问题一:并查集森林的连通分支数(经典,pre[ i ] == i ?)http://acm.hdu.edu.cn/showproblem.php?pid=1232问题二:并查集森林所...

UVA 1665(并查集题目)

本题目的意思是给定一个n*m的数阵(n,m 思路: 给所有格子按权排序,从大到小处理这T个数,每次只需把满足条件的格子加入并查集,并在合并过程中动态统计联通分量的个数。 //#pragma co...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ并查集的题目汇总
举报原因:
原因补充:

(最多只允许输入30个字)