对独立变量的X+Y形式分布的小小探索

原创 2015年11月17日 19:14:32
  今天听概率论的一个问题:求一个两点分布X和一个a,b(a=0,b=1)上的均匀分布Y的和Z的分布情况,求解过程有点麻烦,感觉画下图可能做的更简单点.于是就异想天开的乱画。
    画着画着,我突然想,这个两点分布可不可以看成两个高度为各自概率,位置为X的两个单位冲激呢?即
     1/2§(x)+1/2§(x-1)
 均匀分布则可以看成阶跃函数:
      1/(a+b) [u(y-a)-u(y-b)]
将这两者卷积,很自然的得到:
     1/2[u(z)-u(z-2)]
结果和老师的最终答案完全符合,然而这是不是特例呢?然后再验证了一下书上的一个例子,两个完全一样的均匀分布的和:
fX(x)=1/2a    |x|<= a        fY(y)=1/2a    |y|<=a

最终结果验证了,依旧符合。

再往前看下书上推导的结论:(f代表边缘概率密度。)    f(z) = (实数域积分)f(x,z-x)dx.


f(x,z-x)就相当于f(x,y)

若X,Y相互独立,则有f(x,y)=fX(x) fY(y)

fZ(z)= (实数域积分)fX(x)fY(y)dx=(实数域积分)fX(x)fY(z-x)dx

而在信号与系统里面,卷积的定义不正是:y(t)=(实数域积分)x(t)h(t-x)dx
这样独立的随机变量的和实际上就是卷积积分的运算,这不就代表可以使用非常方便的微分冲激法来计算X,Y和的分布了吗。因为X,Y所服从的分布像两点分布,均匀分布,是很容易微分出冲激串的,运算应该会简单很多。 
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

二维联合分布(X,Y)求(U,V)

二维联合分布(X,Y)求(U,V)@(概率论)问:从F(x,y)是否可以求得f(x,y)? 是不是只有相互独立时,由f(x,y)=fX(x)fY(y)f(x,y) = f_X(x)f_Y(y)得到。其...

JavaEE_Mybatis_SpringMVC_Mybatis_lesson10__利用foreach标签_拼接SQL串,实现IN(X,Y,Z,...的形式)

目的在mybatis下拼接串 ,   实现Preparing: SELECT * FROM user WHERE user.id IN ( ? , ? , ? )的形式。  同理可以实现 SELE...

gdal坐标变换(x,y变经纬度)

gdal坐标变换最近因为一些原因需要读取地理数据,我使用的工具是gdal,在处理数据的时候遇到一些小的问题,自己折腾了会儿,现在分享出来,避免大家浪费时间。 tiff, geotif和gdal都可以提...

dropList下拉框,可微调控制在ScrollView上的位置,通过设置下拉框的X、Y值为ScrollView的偏移量即可

//.h @protocol LJBDropListViewDelegate NSObject> /**  数据源 行数  */ - (NSInteger)ljbDropListV...

独立同分布的中心极限定理

  • 2017年08月02日 20:29
  • 599KB
  • 下载

将x中从第p位开始的n个(二进制)位设置为y中最右边n位的值,x的其余各位保持不变

     源自《The C Programming Language》P40 pr2-6:      编写一个函数setbits(x, p, n, y),该函数返回对x执行下列操作后的结果值:将x中从...
  • roma823
  • roma823
  • 2011年05月03日 21:24
  • 2476

Delphi中关于OleVariant 自动化变量的一点小小的认识(原发于2007-6-13)

记下我的经历,希望对你有用。 上个星期,因为要帮老师带CAN总线的实验,买的是北京三纯科技的CAN总线的接口卡和CAN总线PCI 的接口卡。实验要我自己想如何做。晕。不过没有办法。想来想去,...
  • semilog
  • semilog
  • 2012年08月15日 19:49
  • 942
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:对独立变量的X+Y形式分布的小小探索
举报原因:
原因补充:

(最多只允许输入30个字)