关闭

对独立变量的X+Y形式分布的小小探索

180人阅读 评论(0) 收藏 举报
分类:
  今天听概率论的一个问题:求一个两点分布X和一个a,b(a=0,b=1)上的均匀分布Y的和Z的分布情况,求解过程有点麻烦,感觉画下图可能做的更简单点.于是就异想天开的乱画。
    画着画着,我突然想,这个两点分布可不可以看成两个高度为各自概率,位置为X的两个单位冲激呢?即
     1/2§(x)+1/2§(x-1)
 均匀分布则可以看成阶跃函数:
      1/(a+b) [u(y-a)-u(y-b)]
将这两者卷积,很自然的得到:
     1/2[u(z)-u(z-2)]
结果和老师的最终答案完全符合,然而这是不是特例呢?然后再验证了一下书上的一个例子,两个完全一样的均匀分布的和:
fX(x)=1/2a    |x|<= a        fY(y)=1/2a    |y|<=a

最终结果验证了,依旧符合。

再往前看下书上推导的结论:(f代表边缘概率密度。)    f(z) = (实数域积分)f(x,z-x)dx.


f(x,z-x)就相当于f(x,y)

若X,Y相互独立,则有f(x,y)=fX(x) fY(y)

fZ(z)= (实数域积分)fX(x)fY(y)dx=(实数域积分)fX(x)fY(z-x)dx

而在信号与系统里面,卷积的定义不正是:y(t)=(实数域积分)x(t)h(t-x)dx
这样独立的随机变量的和实际上就是卷积积分的运算,这不就代表可以使用非常方便的微分冲激法来计算X,Y和的分布了吗。因为X,Y所服从的分布像两点分布,均匀分布,是很容易微分出冲激串的,运算应该会简单很多。 
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:4104次
    • 积分:194
    • 等级:
    • 排名:千里之外
    • 原创:16篇
    • 转载:0篇
    • 译文:0篇
    • 评论:4条