LeetCode-- Longest Palindromic Substring

本文介绍了一种高效算法来找出给定字符串中的最长回文子串。利用动态规划的方法,该算法的时间复杂度为O(N^2),并提供了一个具体的实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:


Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.


在字符串s中找到最长为回文的子串。


思路:
1.从s[i]开始两边找,依次判断是否为回文,复杂度为O(N^3),其中,i∈(0,n)无法通过OJ的测试数据。
2.使用dp,其中dp[i,j]表示从s[i]到s[j]是否为回文。 复杂度为O(N^2)




实现代码:








public class Solution {
    public string LongestPalindrome(string s)
    {
        if(s.Length == 0 ){
    		return string.Empty;
    	}
    	
    	if(s.Length == 1){
    		return s;
    	}
    	
    	var dp = new bool[s.Length, s.Length];
    	
    	for(var i = 0; i < s.Length; i++)
            {
                for(var j = 0; j < s.Length; j++)
                {  
                    if(i >= j)
                    {
                        dp[i,j] = true;
                    }
                    else
                    {
                        dp[i,j] = false;
                    }
                }
            }
    	
    	var first = 0;
    	var last = 0;
    	var maxLen = 0;
    	
    	for(var i = 1;i < s.Length ; i++){
    		for(var j = 0;j < s.Length - i ; j++){
    			if(s[j] != s[i + j]){
    				dp[j, j + i] = false;
    			}
    			else{
    				dp[j, j + i] = dp[j + 1,j + i - 1];
    				if(dp[j , j + i] && i + 1 > maxLen){
    					first = j ;
    					last = first + i;
    					maxLen = i + 1;
    				}
    			}
    		}
    	}
    	
    	return s.Substring(first , last - first + 1);
	
	
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值