Beta 分布的应用

从随机变量到顺序统计量

考虑如下的游戏:有一个魔盒(随机数生成器),上有一个按钮,每按一下按钮,就均匀地输出一个 U[0,1] 之间的随机数,现在按上下,得到10个随机数,第7大的数是多少?我更进一步发问,第7大的数,要求猜测不超过0.01才算对。

对上面的游戏作如下的数学抽象:

  1. X1,X2,,XniidU(0,1)
  2. 把这 n 个随机变量排序后得到的顺序统计量X(1),X(2),,X(n)
  3. X(k) 的分布是什么?

对于上面的游戏而言 n=10,k=7 ,如果我们能求出 X(7) 的分布的概率密度,那么用概率密度的极值点取做猜测是最好的策略。对于一般的情形, X(k) 的分布是什么呢?那么我们尝试计算 X(k) 落在区间 [x,x+Δx] 的概率,也即求如下的概率值:

P(xX(k)x+Δx)=?

[0,1] 区间内分为三段 [0,x),[x,x+Δx],(x+Δx,1] ,我们首先考虑简单的情形(这不正是数学研究的基本方法论吗,从简单到复杂),假设 n 个数中只有一个落在了区间 [x,x+Δx]内,则因为要求这个区间的数 X(k) 是第 k 大的,
- 则 [0,x)中应该有 k1 个数,
- (x+Δx] 这个区间中应该有 nk 个数。
不失一般性的,我们先考虑如下的一个符合上述要求的事件 E

E={X1[x,x+Δx],Xi[0,x)(i=2,,k),Xj(x+Δx,1](j=k+1,,n)}




则有:
P(E)==i=1nP(Xi)xk1(1xΔx)nkΔx

(1xΔx)nk 应用二项展开,也即:
(1xΔx)nk==(nk0)(1x)nk(Δx)0+(nk1)(1x)nk1(Δx)1++(nknk)(1x)0(Δx)nk(1x)nk+o(Δx)

其中 o(Δx) 表示 Δx 的高阶无穷小,所以,可对 P(E) ,继续展开得:
P(E)====i=1nP(Xi)xk1(1xΔx)nkΔxxk1[(1x)nk+o(Δx)]Δxxk1(1x)nkΔx

再来考虑这之中的组合数,也即 n 个数中有一个落在 [x,x+Δx] 区间得有 n 中取法,余下的 n1个数中有 k1 个落在 [0,x) 的有 (n1k1) 中组合,故与事件 E 等价的事件一共有 n(n1k1)个。

继续考虑稍微复杂一点的情形,假设 n 个数有两个数落在了区间 [x,x+Δx]

E={X1,X2[x,x+Δx],Xi[0,x)(i=3,4,,k)Xj(x+Δx,1](j=k+1,,n)}

则有:
P(E)=xk2(1xΔx)nk(Δx)2=o(Δx)

从以上的分析我们很容易看出,只要落在 [x,x+Δx] 内的数字超过一个,则对应的事件的概率就是 o(Δx) 。于是:
P(xX(k)x+Δx)==n(n1k1)P(E)n(n1k1)xk1(1x)nkΔx+o(Δx)

所以可以得到 X(k) 的概率密度为:
P(X(k))===limΔx0P(xX(k)x+Δx)Δxn(n1k1)xk1(1x)nkn!(k1)!(nk)!xk1(1x)nkx[0,1]

利用Gamma函数,我们可以把 f(x) 表达为:
f(x)=Γ(n+1)Γ(k)Γ(nk+1)xk1(1x)nk

还记得神奇的Gamma函数可以把许多数学概念从整数集合延拓到实数集合
我们记 α=k,β=nk+1 ,于是我们得到:

P(X(k))=Γ(α+β)Γ(α)Γ(β)xα1(1x)β1

这就是一般意义上的Beta分布。
好,我们回到开始的游戏, n=10,k=7 ,我们按照如下的密度分布的峰值取猜测是最有把握的:
f(x)=10!6!3!x6(1x)3x[0,1]

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值