关闭

基变换与坐标变换

334人阅读 评论(0) 收藏 举报
分类:

1. 过渡矩阵与基变换

x1,x2,,xnVn 的一组旧基,y1,y2,,yn 为其新基,则由基的定义可知:

y1=c11x1+c22x2++cn1xny2=c12x1+c22x2++cn2xnyn=c1nx1+c2nx2++cnnxn

当然也可以写成矩阵的形式:

(y1,y2,,yn)=(x1,x2,,xn)C

矩阵 C 称为过渡矩阵,可以证明的是,过渡矩阵是非奇异矩阵

2. 坐标变换

xVn 在上面所述旧(xi)新(yi)两基下的坐标分别是 (λ1,λ2,,λn)T(η1,η2,,ηn),所以有:

x=λ1x1+λ2x2++λnxn=η1y1+η2y2++ηnyn

写成矩阵形式即为:

x=(x1,x2,,xn)λ1λ2λn=(y1,y2,,yn)η1η2ηn

又由基变换 (yi)=(xi)C 可知:

x=(x1,x2,,xn)λ1λ2λn=(y1,y2,,yn)η1η2ηn=(x1,x2,,xn)Cη1η2ηn

所以可得:

λ1λ2λn=Cη1η2ηn

λi 为旧基下的坐标,ηi 则为新基下的坐标。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2646153次
    • 积分:63449
    • 等级:
    • 排名:第37名
    • 原创:3990篇
    • 转载:37篇
    • 译文:1篇
    • 评论:158条
    博客专栏
    文章分类
    我的微博
    最新评论