人脑是怎样认知图像的?——特征分析模式(传统模式识别之三)

转载 2011年01月22日 14:49:00

前面已经说过,模式是由若干元素或成分按一定关系构成的。这些元素或成分可称为特征,而其关系有时也称为特征。特征说认为,模式可分解为诸特征。

例如,一个大写的英文字母A可以分解为下列特征(见下图):两条斜线、一条水平线和3个锐角。这3个锐角实际上表明这些线段的关系,即两条斜线相交和水平线与两条斜线相接。

LindsayNorman1977)指出,构成所有26个英文字母的特征共有7种,即垂直线、水平线、斜线、直角、锐角、连续曲线和不连续曲线,如F有一条垂直线、两条水平线和3个直角;P有与F一样的特征,外加一条不连续曲线;R有与P一样的特征,另有一条斜线,等等。

Gibson1969)也曾就英文字母的特征提出过类似的看法,但区分出12种特征。

照特征说看来,特征和特征分析在模式识别中起着关键的作用。其认为外部刺激在人的长时记忆中,是以其各种特征来表征的,在模式识别过程中,首先要对刺激的特征进行分析,也即抽取刺激的有关特征,然后将这些抽取的特征加以合并,再与长时记忆中的各种刺激的特征进行比较,一旦获得最佳的匹配,外部刺激就被识别了。这就是一般的特征分析模型。  

 

 

  

特征说所强调的特征,不管它在长时记忆中的编码形式是怎样的,其地位和作用看起来类似模板说中的模板。

Anderson1980)指出,这种特征似可看作微型模板。这个看法是有一定道理的。也许可以说,特征是一种局部的部件模板。但是特征说毕竟不同于模板说,并且具有一定的优点。

 

首先,依据刺激的特征和关系进行识别,就可以不管刺激的大小、方位等其他细节,避开预加工的困难和负担,使识别有更强的适应性。

其次,同样的特征可以出现在许多不同的模式中,必然要极大地减轻记忆的负担。

第三,由于需要获得刺激的组成成分信息,即抽取必要的特征和关系,再加以综合,才能进行识别,这使模式识别过程可带有更多的学习色彩。这一点看来是极重要的。应当说,特征分析模型是含有较多的学习可能性的。

还可以预料,当不同的模式具有一些共同的特征时,就会使识别发生困难,甚至出现错误,将这些模式混淆起来。在人的实际知觉中,确实常常出现这些情况。这方面的事实也是支持特征说的有力的证据。对此曾进行过有关的实验研究。

特征分析模式是根据图像特征实现视觉再现。该模式首先是从图像中提取特征,而特征是依各种图像而千差万别的。因此特征的提取涉及面很广,与识别对象的各种物理、形态的性能都有关系。垂直线、水平线、曲线、角、交点、孔等都可以作为特征,因此产生了各种各样的特殊方法来抽取特征。均值、方差、信息量、相关系数、绝对值等也可以作为特征,这样就涉及到大量的特征计算。

特征分析模式还有两个难以克服的困难问题:一个是如何选取合理的特征去表示自然界的图像;另一个是如何确定所选特征之间的相互关系。

设想识别一只鸟,这时可以定义鸟的特征是:羽毛、翅膀、尾巴、鸟头和鸟脚。问题是识别羽毛、翅膀、尾巴、鸟头和鸟脚之类并不比识别一只完整的鸟容易。当然也可以将垂直线、水平线、曲线、角和圆作为鸟的特征。问题是这时要选取许许多多这类特征,而这类特征也可以用来描述小狗小猫,更何况至今无人用这类特征去描述自然界的复杂景物。

事实上所选取特征之间的相互关系也是个非常复杂的问题.特征所处的位置,特征之间相互形成的走向,特征与特征的相互干扰等等,以及阴影、叠合、掩盖等,都会影响视觉识别的最后结果。

特征分析模式在识别字符和简单几何图形中精度高。尤其是识别人脸;生物学的实验说明,人的头脑中存在选择物体的某些特性的专门机构。

 

 

                                                                       (作者:刘建忠    http://hi.baidu.com/liujianz

相关文章推荐

人脑是怎样认知图像的?——结构描述模式(传统模式识别之五)

结构描述模式一般用图来表示,图的节点表示图像某一部分或某一特性,图的节点之间用有向线段相联,说明图像各部分或各特性之间的关系。图像特征可以是亮度、颜色、纹理、大小、取向、形状等等,特征的描述可以是文字...

人脑是怎样认知图像的?——视觉二元学说

视网膜上有两类感光细胞。一类叫视杆细胞(也称暗视觉,边缘视觉或晚光觉系统),工作的环境亮度在10~3×104cd m-2之间。它含有一种感光物质——视紫红质。视紫红质对弱光非常敏感,微弱的光就能使它分...

人脑是怎样认知图像的?——原型匹配模型(传统模式识别之二)

这个假说可看作是针对模板说的不足而提出来的。原型说的突出特点是,它认为在记忆中贮存的不是与外部模式有一对一关系的模板,而是原型(Prototype)。原型不是某一个特定模式的内部复本。它被看作一类客体...

人脑是怎样认知图像的?——傅里叶模式(传统模式识别之四)

傅立叶模式认为,人脑长时记忆存储的是图像形状的傅立叶转换模式,而不是图像形状的原形。傅立叶变换的实质是将视网膜得到的图像的密度矩阵分解成一定频率上的信号。也就是说,把在真实世界看到的图像通过一个变换而...

人脑是怎样认知图像的?——成分识别理论(最新模式识别之三)

Biederman(1987)在Marr和Nishihara(1978)的理论的基础上提出了成分识别理论(recognition-by component theory)。该模型基于这样一种观...

人脑是怎样认知图像的?——注意的特征整合理论(最新模式识别之二)

人脑是怎样认知图像的?——注意的特征整合理论(最新模式识别之二)注意的特征整合理论(feature-integration theory of attention)主要探讨视觉早期加工的问题,因此...

人脑是怎样认知图像的?——相互作用激活理论(最新模式识别之四)

相互作用激活理论(interactive activation model)是麦克利兰和鲁姆尔哈特(McClelland & Rumelhart )于1981 提出。主要处理在语境(conte...

人脑是怎样认知图像的?——十种模式识别认知理论简介导引

在许多科幻电影中都会看到,机器人健步如飞,寻找和发现敌人,比我们人类看的远、看的准,力大无比,智慧超群,总是在最危险的时候挽救人类。其实,这些目前还仅仅是科幻,在现实世界中办不到。原因之一就是我们还不...

对比传统模式识别方法理解 Deep Learning

通过从传统的模式识别系统分析入手,理解Deep learning 到底做了什么。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:人脑是怎样认知图像的?——特征分析模式(传统模式识别之三)
举报原因:
原因补充:

(最多只允许输入30个字)