阅读小结:InfoGAN:Interpretable Representation Learning by Information Maximising Generative Adversarial

原创 2016年09月08日 19:56:11

之前GAN中都没有加入分类信息,都是耍流氓啊。用原始maxD的时候,G学到的容易收敛到一个固定图像。

而用feature matching的话,相同向量可能每次match的都不同,这怎么regression啊,摔  (也可能我是用姿势不对,但有多类的feature matching不靠谱啊)


What:

1.通常GAN把一个随机噪声向量z生成为一张图像。z可能从一个 0到1的随机采样构成。

2.这样连累了GAN中的每个值的作用

- 因为即使你改了向量中一个值,对生成图片的影响也是很小的。一定要改变很多个值去影响生成的结果。

- 每个值应该是有实际含义的(即文题中的interpretable,可翻译的),理想情况下,每个值应该都有物理含义,比如在人脸生成任务中,一个值控制眼睛的颜色,一个控制头发的长度等等。 (类似分类最后fc的每个值都有含义的,虽然定义不了)

3.所以作者建议对GANs基于共同信息(mutual information)的改进,将会得到有意义的向量元素(每个值)


How

1.潜在编码 latent code c

- 原来的GAN G的输出为 G(z) 现在改为 G(z,c)

- c可以包含多种变量,根据不同的分布,比如在MNIST中,c可以一个值来表示类别,一个高斯分布的值来表示手写体的粗细


2.共同信息 mutual information

- 如果使用潜在编码c,其实没有监督让网络去使用c。它就往往会被忽略。

- 为了避免这种情况,作者定义了一个熵。作为衡量X,Y两个变量之间 mutual information的程度

 I(X;Y) = entropy(X) - entropy(X|Y) = entropy(Y) - entropy(Y|X)  这个值就像条件概率,X,Y互相独立的话,这个值应该等于0.

-新的loss被定义为 old loss - lamda* I(G(z,c);c)  

我们需要增大生成出来的图像 与 类别c的关联。所以I(G(z,c);c)  的目标是变大。


3. variational mutual information maximisation

有一串公式。。。大概就是用一个网络从 G(z,c) 来regress c  可以和D是同一个网络,最后分个叉来回归c。


我简单模仿了一下,在输入向量中加了分类信息,github地址为:https://github.com/layumi/2016_GAN_Matlab  欢迎fork star  ~~


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

InfoGAN介绍

今天给大家分享的是NIPS2016的InfoGAN。这篇paper所要达到的目标就是通过非监督学习得到可分解的特征表示。使用GAN加上最大化生成的图片和输入编码之间的互信息。最大的好处就是可以不需要监...

InfoGAN论文笔记+源码解析

GAN,Generative Adversarial Network是目前非常火也是非常有潜力的一个发展方向,原始的GAN模型存在着无约束、不可控、噪声信号z很难解释等问题,近年来,在原始GAN模型的...
  • wspba
  • wspba
  • 2017年02月01日 17:24
  • 3142

深度学习(四十八)InfoGAN学习笔记

本文是本人阅读《InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversar...
  • hjimce
  • hjimce
  • 2017年02月18日 11:10
  • 4840

infoGAN阅读

Abstract: 本文介绍了InfoGAN,它是一种对生成对抗网络的信息理论扩展,能够以完全无监督的方式学习特征分离表示。 InfoGAN也是一个生成对抗网络,最大化潜在变量的一小部分与观察(生成...

每日论文InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial

转载地址:http://hacker.duanshishi.com/?p=1766 InfoGAN InfoGAN是一种能够学习disentangled representation的GA...

带标签的infogan及其代码解析

如前所述,infogan的提出的目标在于非监督生成模型,然而我们人类总是对数据有一些确定的知识(如图片表达得数字为几之类的),如果将这些确定的知识结合infogan进行半监督的学习,生成的数据的效果必...
  • dagekai
  • dagekai
  • 2017年01月14日 05:28
  • 1574

InfoGAN介绍

InfoGAN介绍 GAN网络是是一种无监督的生成模型,能够利用已有的样本集进行训练,生成与源域样本集相似的样本。GAN模型有两部分组成,一个是样本生成器G,一个是样本来源判别器D。生成器G希望生成...

Infogan-信息最大化生成对抗网络(理论部分)

对抗生成网络(GAN)和贝叶斯变分自编码是最为主要的两种数据生成模型,目前的生成对抗网络的一些改良技术已经实现了非常逼真的图像link。 此外生成模型也是非监督学习的主要驱动力之一,假若人工神经网络...
  • dagekai
  • dagekai
  • 2016年12月31日 06:11
  • 1307

<模型汇总_5>生成对抗网络GAN及其变体SGAN_WGAN_CGAN_DCGAN_InfoGAN_StackGAN

前面介绍了CNN(Convolutional Neural Network)、BNN(Binarized neural network)、dual-learning NMT和DBN,以及深度学...

RBM(限制玻尔兹曼机)、DBN(深度信念网络)介绍

一、DBNs是一个概率生成模型,与传统的判别模型的神经网络相对,用于建立一个观察数据和标签之间的联合分布。          以下左图为sigmoid belief network,右图为DBN...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:阅读小结:InfoGAN:Interpretable Representation Learning by Information Maximising Generative Adversarial
举报原因:
原因补充:

(最多只允许输入30个字)