阅读A Discriminative Feature Learning Approach for Deep Face Recognition

原创 2016年11月21日 20:52:11

论文链接:http://101.96.10.64/ydwen.github.io/papers/WenECCV16.pdf

原作者代码链接

Caffe:https://github.com/kpzhang93/caffe-face

MxNet:https://github.com/pangyupo/mxnet_center_loss


What:

对于分类任务来说,最后预测的是一个联合概率。这个概率可以由卷积获得。

打个比方:[1,0,0,1],[0,1,1,0]我可以预测为同一类。只要用[1,0,1,0]的filter。那么对于这个filter的卷积结果都是1,没毛病。

同时,我们发现了一个问题。这两个虽然是同一类,但是特征完全不同。也就是说,如果我们拿CNN中间的特征出来,也可能发现这种乌龙事件。

虽然分类效果很好,但是中间层的特征并不是按我们预想的那样分布的。

为了解决这个问题,常见的方案是 contrastive loss 和 triplet loss。作者则提出了一个center loss和softmax loss 联合训练。


How:

1.为每一类设置一个中心点(这个中心点实际上就是每一类特征的聚类中心。)

2.除了在继续做分类问题外,对每一个中心点(多维空间下,这个点其实就是一个多维向量),把图像的特征和这个中心点,做L2 Loss

让所有该类的特征都尽可能的靠近中心靠近。


我在Matlab上重现了这个实验 (https://github.com/layumi/2016_Center_Loss)


重现分为了几个部分:

1. minist数据集上,将网络fc层设置为2维,train一个10分类的网络。在test集上将2维结果可视化。 (使用的网络为论文中的LeNet++)

2. 加入centerloss,再train。再可视化。

3. 应用到大数据集(i.e.人脸数据集)上。(这一步我还没测)



P.S.我想了一下。。如果cosine距离的话,用不用这个loss差异不大啊。只是个人感受。


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

ECCV A Discriminative Feature Learning Approach for Deep Face Recognition

A Discriminative Feature Learning Approach for Deep Face Recognition 主要思想:   是一种metric learning的思想,本...

A Discriminative Feature Learning Approach for Deep Face Recognition 的源码部分分析

前一篇文章介绍了centerloss的训练过程,以及结果。本文分析一下CenterLoss的源码部分。同时这也是在caffe中添加新的一层的方法。(本文时特例添加loss层) 宏观感受 ...

A Discriminative Feature Learning Approach for Deep Face Recognition 原理及在caffe实验复现

本文主要讲centerloss 的原理,及其创新点。然后用caffe 跑自己的数据(CASIA-WebFace | MsCelebV1-Faces-Aligned) Reference pap...

人脸识别 - A Discriminative Feature Learning Approach for Deep Face Recognition

A Discriminative Feature Learning Approach for Deep Face Recognition  ECCV 2016 code: https://gi...

A Discriminative Feature Learning Approach for Deep Face Recognition

16年ECCV的文章《A Discriminative Feature Learning Approach for Deep Face Recognition》 code:https://github...

17.4.10 Deep Heterogeneous Feature Fusion for Template-Based Face Recognition 小感

首先,给自己一个目标吧。以后保证每个工作日至少发飙一篇博客,内容主要是记录最近都干了些什么,遇到了什么问题,如何解决的,以及有什么想法。 近期读了一篇文章 《Deep Heterogeneous ...

A Discriminative Feature Learning Approach

  • 2017年09月22日 15:44
  • 1.38MB
  • 下载

From Facial Parts Responses to Face Detection: A Deep Learning Approach

这篇是汤晓欧组最新的一篇人脸检测的论文,在FDDB上论文组中,目前取得第一的好成绩。故拿此文拜读一番,写篇读后感: 首先,作者提出一个Faceness net的概念,这个概念实际上很简单,就是训练人...

[深度学习]Deep Residual Learning for Image Recognition(ResNet,残差网络)阅读笔记

这一篇博文我们介绍的是大神何恺明的大作ResNet的论文,Kaming He绝对是我目前最崇拜的计算机视觉方面的大神,从12年的暗通道去雾的论文到这篇残差网络的论文,看完简直不能更爽,这里一定要隆重介...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:阅读A Discriminative Feature Learning Approach for Deep Face Recognition
举报原因:
原因补充:

(最多只允许输入30个字)