关闭

阅读A Discriminative Feature Learning Approach for Deep Face Recognition

标签: 机器学习人脸识别
1377人阅读 评论(3) 收藏 举报
分类:

论文链接:http://101.96.10.64/ydwen.github.io/papers/WenECCV16.pdf

原作者代码链接

Caffe:https://github.com/kpzhang93/caffe-face

MxNet:https://github.com/pangyupo/mxnet_center_loss


What:

对于分类任务来说,最后预测的是一个联合概率。这个概率可以由卷积获得。

打个比方:[1,0,0,1],[0,1,1,0]我可以预测为同一类。只要用[1,0,1,0]的filter。那么对于这个filter的卷积结果都是1,没毛病。

同时,我们发现了一个问题。这两个虽然是同一类,但是特征完全不同。也就是说,如果我们拿CNN中间的特征出来,也可能发现这种乌龙事件。

虽然分类效果很好,但是中间层的特征并不是按我们预想的那样分布的。

为了解决这个问题,常见的方案是 contrastive loss 和 triplet loss。作者则提出了一个center loss和softmax loss 联合训练。


How:

1.为每一类设置一个中心点(这个中心点实际上就是每一类特征的聚类中心。)

2.除了在继续做分类问题外,对每一个中心点(多维空间下,这个点其实就是一个多维向量),把图像的特征和这个中心点,做L2 Loss

让所有该类的特征都尽可能的靠近中心靠近。


我在Matlab上重现了这个实验 (https://github.com/layumi/2016_Center_Loss)


重现分为了几个部分:

1. minist数据集上,将网络fc层设置为2维,train一个10分类的网络。在test集上将2维结果可视化。 (使用的网络为论文中的LeNet++)

2. 加入centerloss,再train。再可视化。

3. 应用到大数据集(i.e.人脸数据集)上。(这一步我还没测)



P.S.我想了一下。。如果cosine距离的话,用不用这个loss差异不大啊。只是个人感受。


1
0
查看评论

A Discriminative Feature Learning Approach for Deep Face Recognition 原理及在caffe实验复现

本文主要讲centerloss 的原理,及其创新点。然后用caffe 跑自己的数据(CASIA-WebFace | MsCelebV1-Faces-Aligned) Reference paper:A Discriminative Feature Learning Approach for ...
  • dongfang1984
  • dongfang1984
  • 2016-11-25 16:59
  • 9026

人脸识别 - A Discriminative Feature Learning Approach for Deep Face Recognition

A Discriminative Feature Learning Approach for Deep Face Recognition ECCV 2016code: https://github.com/ydwen/caffe-face本文针对人脸识别问题,针对 loss function提出...
  • cv_family_z
  • cv_family_z
  • 2016-10-17 10:10
  • 5277

阅读A Discriminative Feature Learning Approach for Deep Face Recognition

论文链接:http://101.96.10.64/ydwen.github.io/papers/WenECCV16.pdf 原作者代码链接 Caffe:https://github.com/kpzhang93/caffe-face MxNet:https://github.com/pangyu...
  • xiaopihaierletian
  • xiaopihaierletian
  • 2017-07-29 21:05
  • 369

A Discriminative Feature Learning Approach for Deep Face Recognition

16年ECCV的文章《A Discriminative Feature Learning Approach for Deep Face Recognition》 code:https://github.com/ydwen/caffe-face Motivation:   ...
  • yang_502
  • yang_502
  • 2017-05-28 13:46
  • 1266

论文阅读-《Learning Deep Features for Discriminative Localization》

收录于CVPR2016 关于全连接层不能保持spatial information的理解 相比全连接层,卷积层是一个spatial-operation,能够保持物体的空间信息(translation-variant)。比如一个物体原来在左上角,卷积之后的结果feature-map在左上角的激活值大...
  • yaoqi_isee
  • yaoqi_isee
  • 2017-03-15 08:28
  • 1481

论文阅读:Eccv 2016 A Discriminative Feature Learning Approach for Deep Face Recognition

这篇文章为了最小化类内差距,在softmax loss上添加一项center loss,即每个样本和它对应的类别的特征向量的中心的距离。概述在通常的物体检测、场景分类和动作识别中,测试样本的类别事先是知道的,这种问题叫闭集问题(close-set problem)。预测出来的label对算法性能有决...
  • u014230646
  • u014230646
  • 2016-12-20 15:54
  • 671

论文阅读理解 - CenterLoss: A Discriminative Feature Learning Approach

Center Loss For Face Recognition - 提高CNN学习的特征的判别能力. Center Loss 通过学习每一类的深度特征的中心,同时惩罚深度特征与对应的类别中心的距离. Softmax Loss + Center Loss,可以同时增加类间分散程度(inter-cl...
  • oJiMoDeYe12345
  • oJiMoDeYe12345
  • 2017-11-16 10:52
  • 597

ECCV A Discriminative Feature Learning Approach for Deep Face Recognition

A Discriminative Feature Learning Approach for Deep Face Recognition 主要思想:   是一种metric learning的思想,本文提出在原有的网络结构上加入center loss,仅改变原有的损失层,使得网络...
  • E01114255
  • E01114255
  • 2016-11-02 10:41
  • 1365

A Discriminative feature learning approach for deep face recognition

有道云笔记笔记已分享到有道云笔记,请跳转查阅
  • gdmmzmj
  • gdmmzmj
  • 2016-11-23 14:23
  • 397

人脸识别 - A Discriminative Feature Learning Approach for Deep Face Recognition

A Discriminative Feature Learning Approach for Deep Face Recognition  ECCV 2016 code: https://github.com/ydwen/caffe-face 本文针对人脸识别问题,针对 lo...
  • u014696921
  • u014696921
  • 2017-04-13 20:44
  • 566
    个人资料
    • 访问:76952次
    • 积分:1155
    • 等级:
    • 排名:千里之外
    • 原创:33篇
    • 转载:0篇
    • 译文:3篇
    • 评论:45条
    文章分类
    关于我