【行人重识别】A Discriminatively Learned CNN Embedding for Person Re-identification

原创 2016年12月11日 00:07:57

A Discriminatively Learned CNN Embedding for Person Re-identification

link: https://arxiv.org/abs/1611.05666

Author: Zhedong Zheng, Liang Zheng and Yi Yang

Code can be shared upon request. (only for academic)   

Author email: zdzheng12@gmail.com 

Homepage: http://zdzheng.xyz


这篇 行人重识别 paper主要ague的是  

1. verification label 为0,1二值。如果输入的两张图片为同一人,则为1,否则为0。

显然,这个label较弱,由于它没有利用上整的数据集的标注信息(每次只考虑了两个或三个样本之间label的关系,如contrastive loss 和 triplet loss)。

2. identity label为身份label。比如在Market1501数据集上,有751个identity,那么就是751个label。这个label较强,为数据集原始的标注信息。

如下图,可以直观的看到 对于身份认证模型(verification model)来说,虽然他显式的考虑了样本之间的相似度,但显然没有充分利用所有的label信息。

而对于身份分类模型(classification model),在一个batch中一起bp。其实潜在就融合了类内数据在高维空间相似和类间差异的要求。

于是提出的模型融合了这两种loss。


3. 网络模型如何

作者其实简单融合了原始的两种loss,并做了修改。在bp时,按权重将两种loss的梯度一同tune network。

篮框中的网络即为原来finetune的classification model,最后predict identity label。

其中Square Layer 即为 简单的欧式距离但element wise。所以得出的也是向量。再用这个向量去predict verification label。


4.classification和verification谁贡献更大?为什么融合以后好了?

作者还比较了单独使用两个模型的效果。来找到谁的效果更强。Paper中发现classification mode 略好一些。

至于融合以后,如下图,我们可以明显地看出两个网络各自学到了不同的attetion。当fusion之后,the proposed model显示出了一个attention的融合。




最后在market1501的无监督聚类效果图如下,可以看出学到了一些discriminative 特征





P.S. 虽然 Camera6为低清摄像头,但提出的embedding没有受到很大的影响。(相比于原始数据集中的Hist结果确实好很多了。。。)



版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

[caffe]深度学习之CNN检测object detection方法摘要介绍

深度学习之CNN检测object detection领域算法发展的非常迅速;有overfeat, rcnn, spp, fast rcnn, faster rcnn等

深度卷积神经网络的行人检测 (pedestrian detection)

行人检测 (pedestrian detection)是智能交通视频分析的基础技术之一。1 现有的方法 基于HOG方法 基于DPM 基于卷积神经网络 基于HOG方法已经研究了很多年,有一些现成的代码实...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

深度学习实践经验:用Faster R-CNN训练行人检测数据集Caltech——准备工作

前言Faster R-CNN是Ross Girshick大神在Fast R-CNN基础上提出的又一个更加快速、更高mAP的用于目标检测的深度学习框架,它对Fast R-CNN进行的最主要的优化就是在R...

行人检测 Is Faster R-CNN Doing Well for Pedestrian Detection?

ECCV 2016 Matlab 代码 :https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian 本文主要是分析了一下Faster R...

行人再识别(行人重识别)【包含与行人检测的对比】

最近,在网上搜索关于“行人重识别”及“行人再识别”等关键词,发现几乎都是关于行人检测的内容。对于“行人重(再)识别”技术能找到的资料很少,这可能是因为“行人重(再)识别”技术最近才刚刚兴起吧。总之,除...

行人再识别(行人重识别)【包含与行人检测的对比】

最近,在网上搜索关于“行人重识别”及“行人再识别”等关键词,发现几乎都是关于行人检测的内容。对于“行人重(再)识别”技术能找到的资料很少,这可能是因为“行人重(再)识别”技术最近才刚刚兴起吧。总之,除...

行人再识别(行人重识别)【包含与行人检测的对比】

最近,在网上搜索关于“行人重识别”及“行人再识别”等关键词,发现几乎都是关于行人检测的内容。对于“行人重(再)识别”技术能找到的资料很少,这可能是因为“行人重(再)识别”技术最近才刚刚兴起吧。总之,除...

论文笔记-Person Re-identification Past, Present and Future

2016_Person Re-identification Past, Present and Future re-ID变得越来越important。早期,主要是有关hand-crafted算法与小规...

深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。 技术交流QQ群:433250724,欢迎对算法、技术感兴趣的同学加入。关于卷积神经网络CNN,网络和文献...

Xception算法详解

论文:Xception: Deep Learning with Depthwise Separable Convolutions 论文链接:https://arxiv.org/abs/1610.02...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)