阅读小结:The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition

原创 2016年12月12日 15:42:55

The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition

paper link: http://cn.arxiv.org/pdf/1511.06789.pdf

dataset: https://github.com/google/goldfinch


What:

同上一篇一样,这也是一篇关于细力度分类的paper。

通过加数据来做fine grain(这是以前大家不太想的。因为finegrain要求的标注难度很高。更不用说加上part或者语义分隔。

所以作者起的题目是unreasonable吧。)


How:

1.抓取类别list

对于鸟和昆虫(磷翅类:蝴蝶和甲虫),分别从wiki上抓了10,982种鸟和14,553种昆虫。

对于aircraft,是人为写了一个409类的list。

对于狗,混合了原来stanford-dog 120类和额外的395类。共515种狗。

2.直接在谷歌图片网站上搜索,获取图片

- 但是应该取多少图片?

- 作者注意到几个趋势:

- 往往数据集中已有的类别图片较多。但数量还是远远少于搜索到的结果。

- 像bird或者aircraft数据集中per class 图片的数量还是很多的。而butterfly不行。

- 数据集在 per class=800的时候都有明显下降。图片数量超过800的class很少。这似乎是一个公开搜索的限制。(因为作者搜集的数据超过800的也很少)

最终作者抓取了超过 9,800,000张图,给26,548 个类别  平均每类370+张图片。


- noise怎么办?

- noise可以分为两类:一类是cross-domain,比如鸟的图片里完全没有鸟;一类是cross-category,比如某种鸟的图像里含有了另一种鸟。

为了量化cross-domain noise,作者人工标注了1000张图片。虽然每一类的cross-domain noise不多,但有一个有趣的关联:随着每一类的图片增多,cross-domain noise在减少。作者得到一个假设,搜索结果其实是一个pool从中得到搜索结果,因此搜索结果慢慢变得准确率高了。

而cross-category noise就难了。(缺乏细力度的标注)作者用了最简单的办法,排除那些搜索结果重复的图片。(搜鹦鹉你出现了,搜犀鸟你又出现了,那你就是流氓)

小结:作者说他们也用过一些技术去除cross-domain,但是发现对结果影响不太重要。所以他们后来就保留了这些noise,主要去除cross-category


3.active learning

另外,作者还提出了一种收集数据集的方法。noise data+annotation。 在学习过程中慢慢加入新的图片。

sample selection: 是按照预先训练好的分类器的置信度分布去采样的,一般高conf的样本对的多。

而不是采样那些uncertain的图片(因为不确定的图片往往质量也不好,所以才被分在边界上嘛)


human annotation:

作者还设计了一个交互界面。



小结:文章整体提供了一个抓数据的方案。细节都make sense 的~


版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

阅读小结:Fine-Grained Recognition with Automatic and Efficient Part Attention

这是一篇baidu research的paper。 主题为细力度分类。这个问题在于找到一些关键的细节。比如在鸟类数据集CUB上,专家往往也是通过鸟的尾巴,或者头部来对鸟类分类的。 What: 预测...

论文阅读笔记 Picking Deep Filter Responses for Fine-grained Image Recognition

原论文: Picking Deep Filter Responses for Fine-grained Image Recognition   (2016CVPR) 作者是上海交通大学的 Xiaope...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

论文阅读(3)--SPDA-CNN: Unifying Semantic Part Detection and Abstraction for Fine-grained Recognition

这篇文章是来自罗格斯大学的Han Zhang等人的工作。由题目可知与上一篇文章一样,本文的作者也关注到了富有语义的局部(利用Part,Part,Part,重要事情强调三遍),作者不满足于CUB-201...
  • lc013
  • lc013
  • 2016-10-10 21:37
  • 800

论文阅读笔记 SPDA-CNN: Unifying Semantic Part Detection and Abstraction for Fine-grained Recognition

这篇论文来自美国罗格斯大学的 Han Zhang, CVPR2016 1. 简介          相比于一般的目标识别,细粒度识别具有更大的挑战性。其原因是由于姿态与视角的不同,不同图像之间微小...

论文阅读(2)--Picking Deep Filter Responses for Fine-grained Image Recognition

这次阅读的文章是Picking Deep Filter Responses for Fine-grained Image Recognition,这篇文章是来自上海交通大学Xiaopeng Zhang...
  • lc013
  • lc013
  • 2016-10-08 22:56
  • 1012

细粒度图像识别文章 Picking Deep Filter Responses for Fine-grained Image Recognition 阅读笔记

细粒度图像识别指的是在一个大类中的数个子类进行识别(例如识别不同鸟类的种类),人们通常需要专业的知识才能达到很高的准确率,而普通的图像分类网络在细粒度图像识别方面也是表现欠佳。本博客讲解了一篇CVPR...

论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center

作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读...

Unsupervised Template Learning for Fine-Grained Object Recognition(精读)

这篇博客是文献《Unsupervised Template Learning for Fine-Grained Object Recognition》的阅读笔记。

SPDA-CNN:Unifying Semantic Part Detectiojn and Abstraction for Fine-grained Recognition

这是2016年发表在CVPR中的一篇有关细粒度分类的文章 1. 引入: 1).细粒度分类的挑战性:微小的视觉差异可能会被其他的因素(如视角、角度等)遮掩。 2).最近有一些CNN-SVM框...

Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center(论文译文)

Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center论文译文: 对Mesos的整体架构进行介绍
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)