可视化神经网络的一些方法

翻译 2016年12月21日 18:11:16

原文为http://cs231n.github.io/understanding-cnn/   


可视化CNN学到的东西

有一些方法可以用来理解和可视化CNN, 作为对深度学习不可解释的论述的反击。


1. 可视化激活值和第一层卷积的权重

最直接的可视化方法就是展示在前向传播(forward pass)网络中的激活值(activation)

对于带relu的网络,激活值的map在开始的层会密集,之后逐渐稀疏。

一个陷阱是你可以注意到一些map,他们对于不同输入,永远响应是全零图。(换句话说,他们对于网络没有贡献)

他们成为了dead filter,这可能是由于高的learning rate导致的。


第二个方法是可视化网络中的权重。 通常第一个conv的filter是最容易解释的,但也是可以可视化其他filter。

在well-trained的网络中filter往往记忆了一些好看和平滑的filter,如果出现了noise 的可视化结果可能你网络没有train足够,

或者正则项太小了(weight decay),导致过拟合了。


2.找图片中 激活值最大的区域

另一个可视化技巧是 拿一堆图片把它们前馈到网络中,找到图片中哪一部分激活值最大。

然后我们可以画出图片。看看对应的receptive field。

(接受域:这个值之前从那些区域的值计算得到的。比方你一次3*3卷积得到一个value,这个value的接受域是3*3

如果3*3中每个值,是由再之前原图3*3得到的,我们不考虑overlap的话,这个value在原图的接受域就是9*9)


3. 用tSNE来embedding

convent是把图片慢慢变成一个表达(这个表达最后可以用线性分类器分类)的过程。

我们可以把图像embedding到2维表达,然后用二维画到图上表达相似的关系。

在这些embedding 到2维方法中,比较有名的方法是tSNE产生视觉上pleasing的结果。


首先,产生一个embedding,我们需要用一些图片通过CNN(比如Alexnet,最后fc 4096维的结果)

我们把他扔到tSNE中每张图得到对应的一个2维向量。然后我们可以把这个2维向量看成坐标,扔到grid里。


4. 遮挡图片的一部份

假设Convnet识别出了一条狗。那么会不会是狗的背景,让cnn识别出狗,而不是狗本身呢?

一种方法是 遮挡图片的一部分 然后看狗那一类的激活值。

按照我们所想,如果遮住狗的话,那判断为狗的激活值应该显著下降。




相关文章推荐

深度学习(二十七)可视化理解卷积神经网络

本篇博文主要讲解2014年ECCV上的一篇经典文献:《Visualizing and Understanding Convolutional Networks》,可以说是CNN领域可视化理解的开山之作...
  • hjimce
  • hjimce
  • 2016年01月19日 19:30
  • 21803

发现一个支持神经网络可视化的好工具-Netscope

最近在玩caffe,在网上瞎逛发现一个神经网络可视化的好工具-Netscope(网址:http://ethereon.github.io/netscope/#/editor),只需要把prototxt...
  • Toykao
  • Toykao
  • 2016年10月21日 10:08
  • 7778

Caffe学习系列——工具篇:神经网络模型结构可视化

在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py 本文将就这两种方法...

[TensorFlow]使用Tensorboard实现神经网络可视化

可视化是深度学习神经网络开发、调试、应用中极为重要的手段。Tensorboard是Tensorflow提供的一个可视化工具,本文通过实际代码实验的方式说明使用TensorBoard实现记录变量,实现可...

深度学习(三十九)可视化理解卷积神经网络(2.0)

学习文献:《Visualizing and Understanding Convolutional Networks》——利用反卷积神经网络可视化CNN 学习目的:学习CNN可视化,了解CNN每层所学...
  • hjimce
  • hjimce
  • 2016年06月26日 11:38
  • 4333

卷积神经网络可视化和理解

神经网络可视化

MIT一牛人对数学在机器学习和计算机视觉的作用给的评述!

1. 线性代数 (Linear Algebra): 我想国内的大学生都会学过这门课程,但是,未必每一位老师都能贯彻它的精要。这门学科对于Learning是必备的基础,对它的透彻掌握是必不可少的。...
  • Yelbosh
  • Yelbosh
  • 2015年04月15日 20:37
  • 2432

记广东公共交通大数据竞赛—— 公交线路客流预测

——最终准确率 76.99% ——排名 83/2734 ——代码: https://github.com/francis7999/gd_line_pop_predict 最后的成绩有欣慰也...

windows 下Keras中神经网络可视化模块安装配置方法

这个模块安装的坑比较多,所以整理如下: 请按如下顺序安装: sudo pip install graphviz(安装接口) sudo apt-get install graphviz(安装软件本身...

神经网络可视化编辑器

  • 2013年08月11日 11:24
  • 22.45MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:可视化神经网络的一些方法
举报原因:
原因补充:

(最多只允许输入30个字)