行人重识别(行人再识别)数据集 DukeMTMC-reID

原创 2017年05月24日 21:40:07




DukeMTMC-reID 下载地址:https://github.com/layumi/DukeMTMC-reID_evaluation

DukeMTMC-reID 为 DukeMTMC数据集的行人重识别子集。原始数据集地址(http://vision.cs.duke.edu/DukeMTMC/) ,为行人跟踪数据集。

原始数据集包含了85分钟的高分辨率视频,采集自8个不同的摄像头。并且提供了人工标注的bounding box.


我们从视频中每120帧采样一张图像,得到了 36,411张图像。一共有1,404个人出现在大于两个摄像头下,有408个人只出现在一个摄像头下。所以我们随机采样了 702 个人作为训练集,702个人作为测试集。在测试集中,我们采样了每个ID的每个摄像头下的一张照片作为 查询图像(query)。剩下的图像加入测试的 搜索库(gallery),并且将之前的 408人作为干扰项,也加到 gallery中。


最终,DukeMTMC-reID 包含了 16,522张训练图片(来自702个人), 2,228个查询图像(来自另外的702个人),以及 17,661 张图像的搜索库(gallery)。并提供切割后的图像供下载。



**图像命名规则为**

"0005_c2_f0046985.jpg", "0005" 代表行人的身份. "c2"代表这张图像来自第二个摄像头. "f0046985" 代表来自摄像头2的 第46985帧.



另外,DukeMTMC-reID还提供了23种属性数据标注 DukeMTMC-attribute供下载。https://github.com/vana77/DukeMTMC-attribute


版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

可视化神经网络的一些方法

原文为http://cs231n.github.io/understanding-cnn/    可视化CNN学到的东西 有一些方法可以用来理解和可视化CNN, 作为对深度学习不可解释的论...

【行人识别】Deep Transfer Learning for Person Re-identification

解决行人识别中的Re-Identification问题:判断两次出现的人是否是同一个人。在Market 1501竞赛中名列榜首。

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

remove_if用法

remove_if function template template ForwardIterator remove_if ( ForwardIterator ...

【行人重识别】A Discriminatively Learned CNN Embedding for Person Re-identification

A Discriminatively Learned CNN Embedding for Person Re-identification 这篇paper主要提出的是一种 行人重识别 的方法。 1. ...

如何加强神经网络训练

1. 扩大数据集 调研CUHK01/CUHK03 2.做数据增强 旋转,翻转,平移 3.triplet loss 4.结构问题 5.multi-task

SpringAOPLab--环绕通知2

package org.niit.springaop.example4; /**消费者接口(这里举例吃饭的顾客)*/ public interface IConsumer { /**...

【开源代码合集】行人重识别

关于行人重识别综述,推荐一下liang zheng 2016年的综述: Past, Present and Future 写了从传统方法到深度学习,从图片到视频的行人重识别的方法。 以下为一些公开...

flex跟后台socket通信

flex跟后台socket通信的例子,可以指定字符编码。           <mx:Script sour
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)