关闭

阅读小结:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

标签: 深度学习CNN物体检测
694人阅读 评论(0) 收藏 举报
分类:

arXiv: https://arxiv.org/pdf/1704.03414.pdf


What:

1. 目标是去增强  检测器对于遮挡和形变 的泛化能力 

2. 但是数据集中 遮挡和形变 的图像一般较少  

3. 所以作者提出了 adversary的方法去增加 训练难度

4. 整个网络是 基于 Fast-RCNN 而不是 Faster-RCNN



How:

1. 先pretrain Fast-RCNN网络

2. 通过sliding window (如果feature map的大小是6*6,这个window大小是2*2)找到遮住哪部分对网络影响最大,用这个使loss最大的mask来pretrain adverse的部分网络(ASDN)

3. pretrain ASDN使用的loss 是 mask上每个像素做二分类cross entropy loss(其实这里也可以直接regression吧?)

4. pretrain完了以后,实际在训练的时候,ASDN输出的不是二值,而是一个0~1之间的概率。所以可以设置一个阈值,来确定最后到底要dropout哪些。作者实际上是先找到top50% predict出来要dropout的点,然后在这50%的位置里再随机选一些点来drop。实际就是drop了 1/3的位置。

5. 现在都pretrain完了~可以连起来训练了 

6. 另外,4中使用了随机采样,是不可导的。所以作者说可以用rl的方法来处理这部分的回传bp,但没细说。

7. 类似的我们除了可以用dropout 来模拟遮挡,也可以用 stn来模拟 物体的旋转 形变。

8. STN这部分限制了旋转角度为 -10度到10度

9. A-dropout 和 A-stn可以串行

2
0
查看评论

目标检测“A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection”

如何训练一个目标检测器,对遮挡和形变鲁棒,目前的主要方法是增加不同情况的图像数据,但这些数据有时又特别少。作者提出使用对抗生成有遮挡或形变的样本,这些样本对检测器来说比较困难,使用这些困难的正样本训练可以增加检测器的鲁棒性。与Fast-RCNN比较,在VOC2007上,mAP增加了2.3%,VOC2...
  • cv_family_z
  • cv_family_z
  • 2017-04-13 11:41
  • 3176

对抗学习用于目标检测--A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection CVPR 2017 Caffe code : https://github.com/xiaolonw/adversarial-frcnn本文将对抗学习...
  • zhangjunhit
  • zhangjunhit
  • 2017-04-12 16:51
  • 5629

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

这篇论文作者在Fast RCNN的基础上,运用对抗生成网络GAN的思想,加入了两个对抗网络来加强Fast RCNN算法的鲁棒性,下面的内容是这篇文章的翻译,我已经修改过大部分的内容使得读起来比较通顺,接下来准备研究代码,根据作者的思想看看能否加入一点自己的东西。 代码:https://github....
  • qq_14839543
  • qq_14839543
  • 2017-05-16 18:21
  • 1107

Object Detection论文清单

Jump to... LeaderboardPapers R-CNNFast R-CNNFaster R-CNNMultiBoxSPP-NetDeepID-NetNoCDeepBoxMR-CNNYOLOYOLOv2AttentionNetDenseBoxSSDDSSDInside-Out...
  • lien0906
  • lien0906
  • 2017-08-23 08:56
  • 728

深度学习目标检测最全最新的方法paper和代码

Jump to... LeaderboardPapers R-CNNFast R-CNNFaster R-CNNMultiBoxSPP-NetDeepID-NetNoCDeepBoxMR-CNNYOLOYOLOv2AttentionNetDenseBoxSSDDSSDInside-Out...
  • qq_29184757
  • qq_29184757
  • 2017-10-29 20:37
  • 145

【目标检测】Object Detection Fast RCNN 算法解析

Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015. http://www.cv-foundation.org/openaccess/cont...
  • g110802008
  • g110802008
  • 2016-09-27 16:21
  • 1171

A-Fast-RCNN: Hard positive generation via adversary for object detection

https://github.com/xiaolonw/adversarial-frcnn Object detection requires the ability to be robust to illumination, deformation, occlusion and intra-cla...
  • u013775900
  • u013775900
  • 2017-06-07 10:25
  • 355

翻译object应为目标,不是对象

 翻译object应为目标,不是对象,跟extend的翻译错误理由一致,对象在中文中没有对应的解释,而object的英文解释为物体、目标。翻译成对象,中国人不理解,还要费死劲的来通过大量的实例来理解抽象的词汇。翻译成物体、目标、物件就很容易被理解。
  • weisba
  • weisba
  • 2008-02-28 22:10
  • 249

Real-time Operation System Course: 解密字符串

#include #define N 8 void decode(char original_message[], char resulting_message[]){ int i, j, k = 0; for(i = 0; i < N; i++){ for...
  • rlikai
  • rlikai
  • 2015-01-18 08:56
  • 11130

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection 笔记

这篇paper主要是针对训练数据时,遮蔽和形变物体的数据集不一定很全面提出的,于是,想到可以用生成网络生成这种数据来进行训练。但是这种数据生成又是很困难的,作者就想到跳过生成数据,直接在Feature Map上做类似的生成。 和生成模型很类似,在Feature Map上引入Adversary去和D...
  • searobbers_duck
  • searobbers_duck
  • 2017-07-25 09:13
  • 261
    个人资料
    • 访问:76955次
    • 积分:1155
    • 等级:
    • 排名:千里之外
    • 原创:33篇
    • 转载:0篇
    • 译文:3篇
    • 评论:45条
    文章分类
    关于我