关闭

基于CNN的增量学习论文的读后感

最近在阅读几篇基于CNN的增量学习的论文。《INCREMENTAL LEARNING WITH PRE-TRAINED CONVOLUTIONAL NEURAL NETWORKS AND BINARY ASSOCIATIVE MEMORIES》09-19 阅读第一篇论文是《INCREMENTAL LEARNING WITH PRE-TRAINED CONVOLUTIONAL NEURAL NETWO...
阅读(596) 评论(0)

C++ 输入一行未知个数的整数

最近笔试的时候,编程题遇到这样要求的输入,需要输入一行整数,个数未知,然后整数之间用空格间隔...
阅读(483) 评论(0)

(转)非极大抑制(Non-Maximum Suppression)

转载自非极大抑制(Non-Maximum Suppression)。参考文章: 1. Non-Maximum Suppression for Object Detection in Python 2. NMS非极大值抑制最近在做人脸识别的项目,其中在人脸检测算法中MTCNN算法是用到了NMS算法来筛选候选的人脸区域得到最佳的人脸位置。这个算法其实应用非常广泛,在比较流行的检测算法中都有使用,包括...
阅读(321) 评论(0)

(转)在Windows上安装GPU版Tensorflow

转载自在Windows上安装GPU版Tensorflow。1. 下载安装Anaconda简单说就是下载 64位 python 3.5 版本的Anacondahttps://www.continuum.io/downloads#windows安装情况:新机,未装python。注意a. Windows只支持64位 python 3.5https://www.tensorflow.org/versions...
阅读(541) 评论(0)

(转)Thrift在Windows及Linux平台下的安装和使用示例

转载自Thrift在Windows及Linux平台下的安装和使用示例 thrift介绍Apache Thrift 是 Facebook 实现的一种高效的、支持多种编程语言的RPC(远程服务调用)框架。本文主要目的是分别介绍在Windows及Linux平台下的Thrift安装步骤,以及实现一个简单的demo演示Thrift的使用方法。更多Thrift原理留在以后再行介绍。thrift安装源码下载:t...
阅读(197) 评论(0)

机器学习算法总结--EM算法

参考自 《统计学习方法》 机器学习常见算法个人总结(面试用) 从最大似然到EM算法浅解 (EM算法)The EM Algorithm 简介 EM算法,即期望极大算法,用于含有隐变量的概率模型的极大似然估计或极大后验概率估计,它一般分为两步:第一步求期望(E),第二步求极大(M)。 如果概率模型的变量都是观测变量,那么给定数据之后就可以直接使用极大似然法或者贝叶斯估计模型参数。 但是当模型含有隐...
阅读(489) 评论(0)

机器学习算法总结--GBDT

参考如下 机器学习(四)— 从gbdt到xgboost 机器学习常见算法个人总结(面试用) xgboost入门与实战(原理篇) 简介 GBDT是一个基于迭代累加的决策树算法,它通过构造一组弱的学习器(树),并把多颗决策树的结果累加起来作为最终的预测输出。 算法介绍GBDT是希望组合一组弱的学习器的线性组合,即有: F∗=argminEx,y[L(y,F(x))]F(x;pm,am)=∑m=0M...
阅读(3727) 评论(0)

机器学习算法总结--提升方法

参考自: 《统计学习方法》 浅谈机器学习基础(上) 简介 提升方法(boosting)是一种常用的统计学习方法,在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提供分类的性能。 boosting和baggingboosting和bagging都是集成学习(ensemble learning)领域的基本算法,boosting和bagging使用的多个分类器的类型...
阅读(706) 评论(0)

机器学习算法总结--K均值算法

参考自: 《机器学习》 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) K-Means Clustering 斯坦福大学公开课 :机器学习课程 简介 K-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据集聚类成不同的组。...
阅读(426) 评论(0)

机器学习算法总结--K近邻

参考文章: 《统计学习方法》 机器学习常见算法个人总结(面试用) 机器学习系列(9)_机器学习算法一览(附Python和R代码) 简介 k近邻(KNN)是一种基本分类与回归方法。 其思路如下:给一个训练数据集和一个新的实例,在训练数据集中找出与这个新实例最近的kk个训练实例,然后统计最近的kk个训练实例中所属类别计数最多的那个类,就是新实例的类。其流程如下所示: 计算训练样本和测试样本中每个样本...
阅读(952) 评论(0)

机器学习算法总结--朴素贝叶斯

这次需要总结的是朴素贝叶斯算法...
阅读(995) 评论(0)

排序算法总结

排序算法最近打算重新复习和总结排序算法,参考文章有: 《大话数据结构》  找工作知识储备(3)—从头说12种排序算法:原理、图解、动画视频演示、代码以及笔试面试题目中的应用 排序的基本概念与分类 假设含有n个记录的序列为r1,r2,⋯,rn{r_1,r_2,\cdots,r_n},其相应的关键字分别为k1,k2,⋯,kn{k_1,k_2,\cdots,k_n},需要确定1,2,⋯,n1,2, \...
阅读(806) 评论(0)

机器学习算法总结--SVM

简介 SVM是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。或者简单的可以理解为就是在高维空间中寻找一个合理的超平面将数据点分隔开来,其中涉及到非线性数据到高维的映射以达到数据线性可分的目的。...
阅读(1281) 评论(0)

C++知识总结(2)--字符串和数组

标准库类型string 标准库类型string表示可变长的字符序列。 使用string类型需要先添加头文件#include,并且由于其定义在命名空间std中,所以还要添加using std::string;。string初始化的方式有下面几种方式:其中使用等号的初始化执行的是拷贝初始化,是将等号右侧的初始值拷贝到新创建的对象中;而不使用等号,执行的就是直接初始化。下面给出了str...
阅读(316) 评论(0)

机器学习算法总结--随机森林

简介 随机森林指的是利用多棵树对样本进行训练并预测的一种分类器。它是由多棵CART(Classification And Regression Tree)构成的。对于每棵树,其使用的训练集是从总的训练集中有放回采样出来的,这意味着总训练集中有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中。在训练每棵树的节点时,使用的特征是从所有特征中按照一定比例随机地无放回的抽取的,假设...
阅读(506) 评论(0)
89条 共6页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:62782次
    • 积分:1392
    • 等级:
    • 排名:千里之外
    • 原创:66篇
    • 转载:23篇
    • 译文:0篇
    • 评论:20条
    关于我
    最新评论