卡尔曼滤波+opencv 实现人脸跟踪 小demo

原创 2015年11月21日 15:58:22
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/video/tracking.hpp"
#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

/** 函数声明 */
void detectAndDisplay(Mat& frame);

/** 全局变量 */
string face_cascade_name = "haarcascade_frontalface_alt.xml";
//string eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
CascadeClassifier face_cascade;
//CascadeClassifier eyes_cascade;
string window_name = "Face detection with Kalman";
RNG rng(12345);
struct face{
    Point leftTop=0;
    int width=0;
    int height=0;
};
face preFace;
/** @主函数 */
int main()
{
    //kalman参数设置
    
    int stateNum = 4;
    int measureNum = 2;
    KalmanFilter KF(stateNum, measureNum, 0);
    //Mat processNoise(stateNum, 1, CV_32F);
    Mat measurement = Mat::zeros(measureNum, 1, CV_32F);
    KF.transitionMatrix = *(Mat_<float>(stateNum, stateNum) << 1, 0, 1, 0,//A 状态转移矩阵
        0, 1, 0, 1,
        0, 0, 1, 0,
        0, 0, 0, 1);
    //这里没有设置控制矩阵B,默认为零
    setIdentity(KF.measurementMatrix);//H=[1,0,0,0;0,1,0,0] 测量矩阵
    setIdentity(KF.processNoiseCov, Scalar::all(1e-5));//Q高斯白噪声,单位阵
    setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));//R高斯白噪声,单位阵
    setIdentity(KF.errorCovPost, Scalar::all(1));//P后验误差估计协方差矩阵,初始化为单位阵
    randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));//初始化状态为随机值

    //读入视频
    
    if (!face_cascade.load(face_cascade_name)){ cout << "--(!)Error loading\n" << endl; };
    Mat frame, frame2;
    VideoCapture cap;
    cap.open("me1.mp4");
    //cap.open("me2.mp4");
    //cap.open("me3.mp4");
    while (true){
        for (int i = 0; i < 1; i++){
            cap >> frame;
        }
        if (!frame.empty())
        {
            resize(frame, frame2, Size(), 0.5, 0.5, INTER_LINEAR);
            Mat prediction = KF.predict();
            Point predict_pt = Point((int)prediction.at<float>(0), (int)prediction.at<float>(1));
            detectAndDisplay(frame2);
            measurement.at<float>(0) = (float)preFace.leftTop.x;
            measurement.at<float>(1) = (float)preFace.leftTop.y;
            KF.correct(measurement);
            //画卡尔曼的效果
            Point center(predict_pt.x + preFace.width*0.5, predict_pt.y + preFace.height*0.5);
            ellipse(frame2, center, Size(preFace.width*0.3, preFace.height*0.3), 0, 0, 360, Scalar(0, 0, 255), 4, 8, 0);
            circle(frame2, center, 3, Scalar(0, 0, 255), -1);
            imshow(window_name, frame2);
            waitKey(1);
        }
        else
        {
            printf(" --(!) No frame -- Break!");
            break; 
        }
    }
    return 0;
}

/** @函数 detectAndDisplay */
void detectAndDisplay(Mat& frame)
{
    std::vector<Rect> faces;
    Mat frame_gray;
    int Max_area=0;
    int faceID=0;

    cvtColor(frame, frame_gray, CV_BGR2GRAY);
    equalizeHist(frame_gray, frame_gray);

    //-- 多尺寸检测人脸
    face_cascade.detectMultiScale(frame_gray, faces, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
    //找出最大的脸,可以去除不是脸的误检,这些误检一般比较小
    for (int i = 0; i < faces.size(); i++)
    {
        if ((int)(faces[i].width*faces[i].height) > Max_area){
            Max_area =(int) faces[i].width*faces[i].height;
            faceID=i;
        }    
    }

    if (faces.size() > 0)//必须是检测到脸才绘制当前人脸圆圈,并且只能绘制最大的脸
    {
        preFace.leftTop.x = faces[faceID].x;
        preFace.leftTop.y = faces[faceID].y;
        preFace.height = faces[faceID].height;
        preFace.width = faces[faceID].width;
        Point center(faces[faceID].x + faces[faceID].width*0.5, faces[faceID].y + faces[faceID].height*0.5);
        ellipse(frame, center, Size(faces[faceID].width*0.5, faces[faceID].height*0.5), 0, 0, 360, Scalar(0, 255, 0), 1, 8, 0);
        circle(frame, center, 3, Scalar(0, 255,0), -1);
    }
    else{//没检测到人脸绘制之前的人脸
        Point center(preFace.leftTop.x + preFace.width*0.5, preFace.leftTop.y + preFace.height*0.5);
        ellipse(frame, center, Size(preFace.width*0.5, preFace.height*0.5), 0, 0, 360, Scalar(0, 255, 0), 1, 8, 0);
        circle(frame, center, 3, Scalar(0, 255, 0), -1);
    }
    
    
}

相关文章推荐

opencv--读取摄像头识别人脸并跟踪

VS上的程序 #include "stdafx.h" #include "cv.h" #include "highgui.h" #include "windows.h" #include ...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

OpenCV与Compressive Tracking实现人脸的实时检测与跟踪

最近一直在关注压缩传感方面的东西,正好看到一篇新论文《Real-Time Compressive Tracking》。作者将压缩感知与图像跟踪结合起来,实现了有效的降维,最后只用一个简单的朴素贝叶斯分...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

学习OpenCV2——卡尔曼滤波(KalmanFilter)详解

本文将简要回顾一下卡尔曼滤波理论,然后详细介绍如何在OpenCV中使用卡尔曼滤波进行跟踪,最后给两个程序实例。...
  • GDFSG
  • GDFSG
  • 2016年03月16日 14:27
  • 12008

opencv 卡尔曼滤波器例子,自己修改过

一、卡尔曼滤波器的理论解释http://blog.csdn.net/lindazhou2005/article/details/1534234(推荐)二、代码中一些随机数设置函数,在opencv中文网...

OpenCV学习笔记(三十六)——Kalman滤波做运动目标跟踪

kalman滤波大家都很熟悉,其基本思想就是先不考虑输入信号和观测噪声的影响,得到状态变量和输出信号的估计值,再用输出信号的估计误差加权后校正状态变量的估计值,使状态变量估计误差的均方差最小。具体它的...

OpenCV学习笔记——Kalman滤波做运动目标跟踪

申明:本文非笔者原创,原文转载自:http://blog.csdn.net/yang_xian521/article/details/7050398 kalman滤波大家都很熟悉,其...

OpenCV运动检测跟踪(blob track)框架组成模块详解

在..\opencv\doc\vidsurv文件夹中有三个doc文件,Blob_Tracking_Modules、Blob_Tracking_Tests、TestSeq,其中Blob_Tracking...

OpenCV2学习笔记(十九):Kalman滤波算法

在视频跟踪处理中,预测目标运动轨迹是一项基本任务。目标运动状态估计的目的有三个:一是对目标过去的状态进行平滑;二是对目标现在的运动状态进行滤波;三是对目标未来的运动状态进行预测。物体的运动状态一般包括...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:卡尔曼滤波+opencv 实现人脸跟踪 小demo
举报原因:
原因补充:

(最多只允许输入30个字)