第十二周实践项目5—迷宫问题

原创 2015年11月20日 08:26:49
/*
* Copyright(c)2015,烟台大学计算机学院 
* All right reserved. 
* 文件名称:项目5.cbp 
* 作者:刘晨筱
* 完成日期;2015年11月20日 
* 版本号;v1.0 
* 问题描述: 
          
     设计一个程序,采用深度优先遍历算法的思路,解决迷宫问题。  
  (1)建立迷宫对应的图数据结构,并建立其邻接表表示。  
  (2)采用深度优先遍历的思路设计算法,输出从入口(1,1)点到出口(M,N)的所有迷宫路径。 

* 输入描述:迷宫的邻接矩阵 
* 程序输出:邻接表表示迷宫,走出迷宫所有的路径 
*/  



#include <stdio.h>
#include <malloc.h>
#define MaxSize 100
#define M 8
#define N 8
//以下定义邻接表类型
typedef struct ANode            //边的结点结构类型
{
    int i,j;                    //该边的终点位置(i,j)
    struct ANode *nextarc;      //指向下一条边的指针
} ArcNode;

typedef struct Vnode            //邻接表头结点的类型
{
    ArcNode *firstarc;          //指向第一条边
} VNode;

typedef struct
{
    VNode adjlist[M+2][N+2];    //邻接表头节点数组
} ALGraph;                      //图的邻接表类型

typedef struct
{
    int i;                      //当前方块的行号
    int j;                      //当前方块的列号
} Box;

typedef struct
{
    Box data[MaxSize];
    int length;                 //路径长度
} PathType;                     //定义路径类型

int visited[M+2][N+2]= {0};
int count=0;
void CreateList(ALGraph *&G,int mg[][N+2])
//建立迷宫数组对应的邻接表G
{
    int i,j,i1,j1,di;
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    for (i=0; i<M+2; i++)                   //给邻接表中所有头节点的指针域置初值
        for (j=0; j<N+2; j++)
            G->adjlist[i][j].firstarc=NULL;
    for (i=1; i<=M; i++)                    //检查mg中每个元素
        for (j=1; j<=N; j++)
            if (mg[i][j]==0)
            {
                di=0;
                while (di<4)
                {
                    switch(di)
                    {
                    case 0:
                        i1=i-1;
                        j1=j;
                        break;
                    case 1:
                        i1=i;
                        j1=j+1;
                        break;
                    case 2:
                        i1=i+1;
                        j1=j;
                        break;
                    case 3:
                        i1=i, j1=j-1;
                        break;
                    }
                    if (mg[i1][j1]==0)                          //(i1,j1)为可走方块
                    {
                        p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                        p->i=i1;
                        p->j=j1;
                        p->nextarc=G->adjlist[i][j].firstarc;   //将*p节点链到链表后
                        G->adjlist[i][j].firstarc=p;
                    }
                    di++;
                }
            }
}
//输出邻接表G
void DispAdj(ALGraph *G)
{
    int i,j;
    ArcNode *p;
    for (i=0; i<M+2; i++)
        for (j=0; j<N+2; j++)
        {
            printf("  [%d,%d]: ",i,j);
            p=G->adjlist[i][j].firstarc;
            while (p!=NULL)
            {
                printf("(%d,%d)  ",p->i,p->j);
                p=p->nextarc;
            }
            printf("\n");
        }
}
void FindPath(ALGraph *G,int xi,int yi,int xe,int ye,PathType path)
{
    ArcNode *p;
    visited[xi][yi]=1;                   //置已访问标记
    path.data[path.length].i=xi;
    path.data[path.length].j=yi;
    path.length++;
    if (xi==xe && yi==ye)
    {
        printf("  迷宫路径%d: ",++count);
        for (int k=0; k<path.length; k++)
            printf("(%d,%d) ",path.data[k].i,path.data[k].j);
        printf("\n");
    }
    p=G->adjlist[xi][yi].firstarc;  //p指向顶点v的第一条边顶点
    while (p!=NULL)
    {
        if (visited[p->i][p->j]==0) //若(p->i,p->j)方块未访问,递归访问它
            FindPath(G,p->i,p->j,xe,ye,path);
        p=p->nextarc;               //p指向顶点v的下一条边顶点
    }
    visited[xi][yi]=0;
}

int main()
{
    ALGraph *G;
    int mg[M+2][N+2]=                           //迷宫数组
    {
        {1,1,1,1,1,1,1,1,1,1},
        {1,0,0,1,0,0,0,1,0,1},
        {1,0,0,1,0,0,0,1,0,1},
        {1,0,0,0,0,1,1,0,0,1},
        {1,0,1,1,1,0,0,0,0,1},
        {1,0,0,0,1,0,0,0,0,1},
        {1,0,1,0,0,0,2,0,0,1},
        {1,0,1,1,0,1,1,1,0,1},
        {1,1,0,0,0,0,0,0,0,1},
        {1,1,1,1,1,1,1,1,1,1},
    };
    CreateList(G,mg);
    printf("迷宫对应的邻接表:\n");
    DispAdj(G); //输出邻接表
    PathType path;
    path.length=0;
    printf("所有的迷宫路径:\n");
    FindPath(G,1,1,M,N,path);
    return 0;
}
<span style="font-family:Arial;BACKGROUND-COLOR: #ffffff">部分运行结果:</span>
<img src="http://img.blog.csdn.net/20151120082727594" alt="" /><img src="http://img.blog.csdn.net/20151120082743681" alt="" />
知识点总结:
图的应用。
学习心得:
<img alt="奋斗" src="http://static.blog.csdn.net/xheditor/xheditor_emot/default/struggle.gif" />
<span style="font-family:Arial;BACKGROUND-COLOR: #ffffff"></span> 

第十二周项目5-迷宫问题之深度优先遍历算法

/*    * Copyright (c) 2016, 烟台大学计算机与控制工程学院    * All rights reserved。    * 文件名称 :1.cpp    * 作    ...
  • Gjyjj
  • Gjyjj
  • 2016年11月18日 10:40
  • 215

第十二周 项目5 迷宫问题之图深度优先遍历解法

/* * 烟台大学计算机与控制工程学院 *文件名称:mian.cpp *作 者:王旭 *完成日期:2015年1...
  • Wang_Xu_
  • Wang_Xu_
  • 2015年11月23日 17:12
  • 330

第十二周项目5 迷宫问题(利用深度遍历算法)

/* * Copyright (c)2015,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名称:项目5.cbp * 作 者:朱希康...
  • zxk201458506144
  • zxk201458506144
  • 2015年12月04日 08:21
  • 270

经典迷宫问题1

1.迷宫问题直观感受     下面给出迷宫问题的一个直观感受图,下图中棕色代表通道阻塞,白色代表可用通道,红色代表起始位置,绿色代表当前位置,黄色代表出口。 迷宫1: 迷宫2: ...
  • ghuilee
  • ghuilee
  • 2015年11月27日 13:09
  • 1973

数据结构实践——迷宫问题之图深度优先遍历解法

本文是针对[数据结构基础系列(7):图]的实践项目。【项目 - 迷宫问题之图深度优先遍历解法】   设计一个程序,采用深度优先遍历算法的思路,解决迷宫问题。   (1)建立迷宫对应的图数据结构...
  • sxhelijian
  • sxhelijian
  • 2015年11月08日 15:36
  • 5922

c++解决迷宫寻路问题

// time.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include ...
  • sx1989827
  • sx1989827
  • 2013年03月05日 14:13
  • 2200

BFS求解迷宫问题初探(java版)

BFS,其英文全称是Breadth First Search。 BFS并不使用经验法则算法。从算法的观点,所有因为展开节点而得到的子节点都会被加进一个先进先出的队列中。一般的实验里,其邻居节点尚未被检...
  • wuhengde
  • wuhengde
  • 2014年01月24日 14:30
  • 2580

POJ3984 迷宫问题【BFS】

POJ 3984 题目: Description 定义一个二维数组: int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0...
  • huanghanqian
  • huanghanqian
  • 2016年05月26日 14:20
  • 2821

POJ-3984-迷宫问题

这道题的难点在于状态的保存。用bfs是从最初的状态一直到最后状态,每一个状态都要保存前一个状态,这样才能保存路径, 怎么保存状态呢?起初我想用链表,有点麻烦,所以用数组代替链表,就是开一个struct...
  • u013497977
  • u013497977
  • 2015年02月14日 15:01
  • 554

数据结构实践——迷宫问题之图深度优先遍历解法

本文是针对[数据结构基础系列(7):图]的实践项目。 【项目 - 迷宫问题之图深度优先遍历解法】     设计一个程序,采用深度优先遍历算法的思路,解决迷宫问题。     (1)建立迷宫对应...
  • likaiwalkman
  • likaiwalkman
  • 2016年01月29日 03:17
  • 284
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第十二周实践项目5—迷宫问题
举报原因:
原因补充:

(最多只允许输入30个字)