程序猿们,是该准备2017年的学习计划了!!!

编程语言

 

一、JavaScript 继续迈着令人难以置信的创新步伐在前进。由于 Web 浏览器的快速发布计划,JS 的标准定为了每年更新。下一个版本,ES2017 预计将于 2017 年中期完成。它将带来许多 JS 开发人员渴望的特性— 用于处理异步函数的 аsync/await 。感谢 Babel,即使在今天,你也可以在每个浏览器中编写 ES2017。

 

二、TypeScript 2.1 于 2016 年年底发布,它将为旧浏览器带来Async/Await异步解决方案,并改进了类型推断。TypeScript 是一种编译为纯 JavaScript 的静态类型语言。它增强了经典的 OOP 模型和可选的静态类型,使大代码库更易于维护。同时,它也是编写 Angular 2 应用程序的首选语言,建议大家可以尝试下。

 

三、C#7.0 预计在 2017 年发布,作为一门优秀的编程语言,它也将得到更大的改进。当微软推出开源的 Visual Studio 代码编辑器和 .Net Core 时,这一举动让众人都感到惊讶万分。它们不仅可以在 Linux、Windows 和 macOS 操作系统中运行,而且你可以在 C#中编写快速、高效的应用程序。同时,这两种工具也都形成了充满活力的社区。相信,它们将在 2017 年会给我们带来更多的惊喜。

 

四、Python 3.6 版本将于本月发布。它正在巩固自身在开发人员、IT 专业人员和科学家在脚本语言选择中的地位。它适用于自动化、Web开发、机器学习和科学计算。虽然 Python 2.X 与 3.X 版本的割裂,对于社区来说是一个长达数年的斗争,但是就目前而言,你可以自信地选择 Python 3 并享受完整的库支持。

 

五、Java 9 也预计在 2017 年发布,它将带来一些备受开发者们所欢迎的新功能,例如评估代码的 repl、HTTP 2.0 的支持以及一些新的 API . 对于有才能的 Java 开发人员和广泛使用该语言进行项目研发的人来说,他们对这些新特性是有强烈需求的。

 

技术

 

Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。通过这种方式,Boot致力于在蓬勃发展的快速应用开发领域(rapid application development)成为领导者。

spring boot更新比较快,最新推出的SpringBoot 1.4在浏览器的支持下实现了实时性,自身更是运用了新的架构和API,能够支持信息定制化和图像输出。

 

Spring Boot资源

源码下载

 

最近一段时间不论互联网还是传统行业,凡是涉及信息技术范畴的圈子几乎都在讨论微服务架构。近期也看到各大技术社区开始组织一些沙龙和论坛来分享spring Cloud的相关实施经验。目前,Spring Cloud在国内的知名度并不高,可能有很多互联网公司的架构师、技术VP或者CTO,甚至还不知道该项目的存在。可能这也与国内阿里巴巴开源服务治理框架Dubbo有一定的关系,除了Dubbo本身较为完善的中文文档之外,不少科技公司的架构师均出自阿里系,由此可见Dubbo还是大量企业项目实施分布式服务化(微服务)架构的首选!建议大家可以尝试了解学习下。

Dubbo资源

Dubbo官网

免费入门教程

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值