POJ2318 叉积判断点与直线的关系

原创 2016年08月28日 23:32:55

利用叉积判断点和直线的位置关系,确定点在直线的左侧还是右侧
通过查找比较点与各个直线(隔板)之间的关系,确定点所在的区间

查找可以用一般方法,因为直线是有序的,但需要考虑0和n的特殊情况。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>

#define maxn 5000+10

typedef struct Point
{
    int x,y;
}point;

typedef struct Line
{
    point a,b;
}Line;

int ans[maxn];
int n;
Line line[maxn];

using namespace std;

int cross(point p0, point p1, point p2) //p0,p1是线段,p2是待判断的点 
{  
    return (p2.x - p0.x)*(p1.y - p0.y)-(p1.x - p0.x)*(p2.y - p0.y);  
}

void search(point toy)   //搜索并利用叉积进行判断 
{
    if(cross(line[0].b,line[0].a,toy)<0)
        ans[0]++;
    else if(cross(line[n-1].b,line[n-1].a,toy)>0)
        ans[n]++;
    else
    {   
        for(int i=0;i<n;i++) 
            if(cross(line[i].b,line[i].a,toy)>0&&cross(line[i+1].b,line[i+1].a,toy)<0)
            ans[i+1]++;
    }   
}

int main()
{
    point toy;
    int m,x1,y1,x2,y2;
    int u,l;
    int xj,yj;
    while(scanf("%d",&n) && n!=0)
    {
        scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
        memset(ans,0,sizeof(ans));
        for(int i=0;i<n;i++)
        {
            scanf("%d%d",&u,&l);
            line[i].a.x=u;
            line[i].a.y=y1;
            line[i].b.x=l;
            line[i].b.y=y2;
        }

        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&xj,&yj);
            point toy;
            toy.x=xj;
            toy.y=yj;
            search(toy);
        }

        for(int i=0;i<=n;i++)
            printf("%d: %d\n",i,ans[i]);
        cout<<endl; 
    }
} 

或者可以将矩形的两个高视为隔板,直接进行查找。

#include <iostream>
#include <cstdio>
#include <cstring>

#define maxn 5000+10

struct point
{
    int x,y;
};

struct Line
{
    point a,b;  
};

int n;
int ans[maxn];
int cnt[maxn];
Line line[maxn];
using namespace std;

int cross(point p0,point p1,point p2)
{
    return  (p0.x-p2.x)*(p1.y-p2.y)-(p1.x-p2.x)*(p0.y-p2.y);
}

void search(point toy)
{
    for(int i=0;i<=n;i++)
    {
        if(cross(toy,line[i].a,line[i].b)>0 && cross(toy,line[i+1].a,line[i+1].b)<0)
            ans[i]++;
    }
}

int main()
{
    int m,x1,y1,x2,y2;
    int u,l,xj,yj;
    point toy; 
    while(scanf("%d",&n) && n!=0)
    {
        memset(ans,0,sizeof(ans));
        memset(cnt,0,sizeof(cnt));
        scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
        line[0].a.x=x1; line[0].a.y=y1;   //将矩形的两高视为隔板 
        line[0].b.x=x1;line[0].b.y=y2;
        line[n+1].a.x=x2; line[n+1].a.y=y1;
        line[n+1].b.x=x2; line[n+1].b.y=y2;

        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&u,&l);
            line[i].a.x=u;
            line[i].a.y=y1;
            line[i].b.x=l;
            line[i].b.y=y2;
        }

        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&xj,&yj);
            toy.x=xj;
            toy.y=yj;
            search(toy);
        }
        for(int i=0;i<=n;i++)
            printf("%d: %d\n",i,ans[i]);
        cout<<endl; 
    }
}

复杂度低一些,二分查找

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>

#define maxn 5000+10

typedef struct Point
{
    int x,y;
}point;

typedef struct Line
{
    point a,b;
}Line;

int ans[maxn];
int n;
Line line[maxn];

using namespace std;

int cross(point p0, point p1, point p2) //p0,p1是线段,p2是待判断的点 
{  
    return (p2.x - p0.x)*(p1.y - p0.y)-(p1.x - p0.x)*(p2.y - p0.y);  
}

void binsearch(point toy)   //搜索并利用叉积进行判断 
{
    int l,r,mid;
    l=0;
    r=n-1;
    while(l<r)
    {
        mid=(r+l)/2;
        if(cross(line[mid].b,line[mid].a,toy)<0)
            r=mid;
        else
            l=mid+1;
    }
    if(cross(line[l].b,line[l].a,toy)<0)
        ans[l]++;
    else
        ans[l+1]++;
}

int main()
{
    point toy;
    int m,x1,y1,x2,y2;
    int u,l;
    int xj,yj;
    while(scanf("%d",&n) && n!=0)
    {
        scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
        memset(ans,0,sizeof(ans));
        for(int i=0;i<n;i++)
        {
            scanf("%d%d",&u,&l);
            line[i].a.x=u;
            line[i].a.y=y1;
            line[i].b.x=l;
            line[i].b.y=y2;
        }

        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&xj,&yj);
            point toy;
            toy.x=xj;
            toy.y=yj;
            binsearch(toy);
        }

        for(int i=0;i<=n;i++)
            printf("%d: %d\n",i,ans[i]);
        cout<<endl; 
    }
} 
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

poj 2318 叉积解点和直线的关系

要判断点的位置,就是利用二分法判断和分界线的相对位置,最终确定点的所在块,利用数组,判断点的位置时利用叉积算有方向的面积. #include #include #include #includ...

poj2318(叉积判断点的位置+二分查找)

作为一个计算几何入门者,个人感觉是个好题 给定两点(x1,y1)、(x2,y2)确定的直线和一点(x,y),判断点在直线的左边还是右边 代码如下:#include #include #include ...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

【解题报告】 POJ 2318 TOYS -- 判断点在某个梯形内 叉积 + 二分

题目连接: POJ 2318 题目大意:给一个长方体盒子,中间竖直插上若干隔板,将盒子分成了若干区域,现在往盒子里丢玩具,问最后各个区域内含有多少玩具。 这道题有两个思路:           ...

POJ 2318 || TOYS (叉积判断左右位置进行折半查找

给你一个矩形的左上角和右下角的坐标,以及从左到右把矩形划分为若干个空间的线段。 这些线段都给出X的坐标,所以线段的两端坐标为,(Ui,Y1)  ( Li,Y2). 在给出M个点的坐标,求每个空间内...
  • FXXKI
  • FXXKI
  • 2015-03-23 23:42
  • 277

POJ2318->叉积判断点在线段的左右

POJ2318->计算几何题意: 已知n条线段把一个区域分成了n+1部分,给出一些点的坐标,求每个小区域中有多少个点。 题解: 利用叉积,线段两个端点为p1p2,记玩具坐标为p0,那么如果(p...

叉积判断点在多边形内外 & poj2318

计算几何中长遇到的问题:判断特定点是否在平面多边形内部。向量叉积是一种方法,用于凸多边形。【优角:角度值大于180度小于360度。凸多边形:沿着多边形的一边做一条直线,如果剩下所有的部分都在直线的同侧...

POJ 2318 TOYS 计算几何(点与直线关系)

TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10668   Accepted...

POJ1106->叉积判断点在直线的左右

POJ1106->叉积判断点在直线的左右题意: 给定平面上一些点的坐标,有一个半径固定,圆心固定且可以旋转的半圆形平面,求这个平面能覆盖到的最大点的数量。 题解: 由于圆心半径一定,所以有效的...

二分+叉积 apio2011 陈可卿 计算几何的一道简单题 poj2318 兼集训总结

这两天是省选,作为高一实在没什么竞争力,但奥特曼依旧杀入省队。 apio讲这道题的时候,我一下灵光一闪,想到了二分,之前除了在nlogn的最长上升子序列用过一次,就再也没用过,只知道跟单调性有关,a...

POJ 2318 TOYS(叉积+二分)

题目链接:Click here~~ 题意: 有一个矩形的盒子,中间插了n个挡板,将盒子分成n+1个区域,然后给m个点,问最后每个区域落下多少个点。(点不会落到挡板上) 解题思路:...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)