POJ2318 叉积判断点与直线的关系

原创 2016年08月28日 23:32:55

利用叉积判断点和直线的位置关系,确定点在直线的左侧还是右侧
通过查找比较点与各个直线(隔板)之间的关系,确定点所在的区间

查找可以用一般方法,因为直线是有序的,但需要考虑0和n的特殊情况。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>

#define maxn 5000+10

typedef struct Point
{
    int x,y;
}point;

typedef struct Line
{
    point a,b;
}Line;

int ans[maxn];
int n;
Line line[maxn];

using namespace std;

int cross(point p0, point p1, point p2) //p0,p1是线段,p2是待判断的点 
{  
    return (p2.x - p0.x)*(p1.y - p0.y)-(p1.x - p0.x)*(p2.y - p0.y);  
}

void search(point toy)   //搜索并利用叉积进行判断 
{
    if(cross(line[0].b,line[0].a,toy)<0)
        ans[0]++;
    else if(cross(line[n-1].b,line[n-1].a,toy)>0)
        ans[n]++;
    else
    {   
        for(int i=0;i<n;i++) 
            if(cross(line[i].b,line[i].a,toy)>0&&cross(line[i+1].b,line[i+1].a,toy)<0)
            ans[i+1]++;
    }   
}

int main()
{
    point toy;
    int m,x1,y1,x2,y2;
    int u,l;
    int xj,yj;
    while(scanf("%d",&n) && n!=0)
    {
        scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
        memset(ans,0,sizeof(ans));
        for(int i=0;i<n;i++)
        {
            scanf("%d%d",&u,&l);
            line[i].a.x=u;
            line[i].a.y=y1;
            line[i].b.x=l;
            line[i].b.y=y2;
        }

        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&xj,&yj);
            point toy;
            toy.x=xj;
            toy.y=yj;
            search(toy);
        }

        for(int i=0;i<=n;i++)
            printf("%d: %d\n",i,ans[i]);
        cout<<endl; 
    }
} 

或者可以将矩形的两个高视为隔板,直接进行查找。

#include <iostream>
#include <cstdio>
#include <cstring>

#define maxn 5000+10

struct point
{
    int x,y;
};

struct Line
{
    point a,b;  
};

int n;
int ans[maxn];
int cnt[maxn];
Line line[maxn];
using namespace std;

int cross(point p0,point p1,point p2)
{
    return  (p0.x-p2.x)*(p1.y-p2.y)-(p1.x-p2.x)*(p0.y-p2.y);
}

void search(point toy)
{
    for(int i=0;i<=n;i++)
    {
        if(cross(toy,line[i].a,line[i].b)>0 && cross(toy,line[i+1].a,line[i+1].b)<0)
            ans[i]++;
    }
}

int main()
{
    int m,x1,y1,x2,y2;
    int u,l,xj,yj;
    point toy; 
    while(scanf("%d",&n) && n!=0)
    {
        memset(ans,0,sizeof(ans));
        memset(cnt,0,sizeof(cnt));
        scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
        line[0].a.x=x1; line[0].a.y=y1;   //将矩形的两高视为隔板 
        line[0].b.x=x1;line[0].b.y=y2;
        line[n+1].a.x=x2; line[n+1].a.y=y1;
        line[n+1].b.x=x2; line[n+1].b.y=y2;

        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&u,&l);
            line[i].a.x=u;
            line[i].a.y=y1;
            line[i].b.x=l;
            line[i].b.y=y2;
        }

        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&xj,&yj);
            toy.x=xj;
            toy.y=yj;
            search(toy);
        }
        for(int i=0;i<=n;i++)
            printf("%d: %d\n",i,ans[i]);
        cout<<endl; 
    }
}

复杂度低一些,二分查找

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>

#define maxn 5000+10

typedef struct Point
{
    int x,y;
}point;

typedef struct Line
{
    point a,b;
}Line;

int ans[maxn];
int n;
Line line[maxn];

using namespace std;

int cross(point p0, point p1, point p2) //p0,p1是线段,p2是待判断的点 
{  
    return (p2.x - p0.x)*(p1.y - p0.y)-(p1.x - p0.x)*(p2.y - p0.y);  
}

void binsearch(point toy)   //搜索并利用叉积进行判断 
{
    int l,r,mid;
    l=0;
    r=n-1;
    while(l<r)
    {
        mid=(r+l)/2;
        if(cross(line[mid].b,line[mid].a,toy)<0)
            r=mid;
        else
            l=mid+1;
    }
    if(cross(line[l].b,line[l].a,toy)<0)
        ans[l]++;
    else
        ans[l+1]++;
}

int main()
{
    point toy;
    int m,x1,y1,x2,y2;
    int u,l;
    int xj,yj;
    while(scanf("%d",&n) && n!=0)
    {
        scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
        memset(ans,0,sizeof(ans));
        for(int i=0;i<n;i++)
        {
            scanf("%d%d",&u,&l);
            line[i].a.x=u;
            line[i].a.y=y1;
            line[i].b.x=l;
            line[i].b.y=y2;
        }

        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&xj,&yj);
            point toy;
            toy.x=xj;
            toy.y=yj;
            binsearch(toy);
        }

        for(int i=0;i<=n;i++)
            printf("%d: %d\n",i,ans[i]);
        cout<<endl; 
    }
} 
版权声明:本文为博主原创文章,未经博主允许不得转载。

利用叉积判断点和线的关系

用叉积判断点在线的左侧还是右侧: 记住那句话,逆正顺负(因为参数的设置不同而不同) 9 3 -2 4 -------------------------------- Process e...
  • theArcticOcean
  • theArcticOcean
  • 2016年01月10日 15:13
  • 1376

POJ1106->叉积判断点在直线的左右

POJ1106->叉积判断点在直线的左右题意: 给定平面上一些点的坐标,有一个半径固定,圆心固定且可以旋转的半圆形平面,求这个平面能覆盖到的最大点的数量。 题解: 由于圆心半径一定,所以有效的...
  • SelinaFelton
  • SelinaFelton
  • 2016年08月27日 23:33
  • 451

判断一个点与直线的位置

来源于三角剖分过程:其中要判断第三个点
  • u010547283
  • u010547283
  • 2014年10月17日 18:00
  • 994

点与线段的位置关系-算法

问题是这样的有一条路和一个商店,
  • H_OO_H
  • H_OO_H
  • 2014年11月12日 15:55
  • 1252

poj 2318 TOYS(叉积判断点是否在四边形内)

题意:给出矩形的左上和右下的坐标,在矩形中有n个木棒,木棒之间不会相交,然后给出木棒上下端点的横坐标,这些木棒将矩形分成多个区域,接着有m个玩具,给出玩具的坐标。输出在每个区域中玩具的个数。 思路:叉...
  • u014552756
  • u014552756
  • 2016年02月16日 09:04
  • 341

poj2318(叉积判断点的位置+二分查找)

作为一个计算几何入门者,个人感觉是个好题 给定两点(x1,y1)、(x2,y2)确定的直线和一点(x,y),判断点在直线的左边还是右边 代码如下:#include #include #include ...
  • u013509299
  • u013509299
  • 2014年03月09日 23:20
  • 682

判断一个点与直线的相对位置

定义:平面上的三点P1(x1,y1),P2(x2,y2),P3(x3,y3) S(P1,P2,P3)= (x1-x3)* (y2-y3) - (y1-y3)*(x2-x3) 令矢量的起点为A,终点...
  • qq_35392050
  • qq_35392050
  • 2017年05月03日 19:34
  • 179

Poj2318使用叉积判断点和线段的位置关系

这题主要利用叉积判断点在线段的左侧还是右侧,然后从左到右找到第一条在它右边的线段即可。 暴力直接跑可以过,如果要快点的话,可以加个二分。 #include #include #include...
  • qq_23703403
  • qq_23703403
  • 2016年02月01日 22:16
  • 68

如何判断直线之间和直线与平面之间的关系

计算机图形学研究
  • myfather103
  • myfather103
  • 2017年03月03日 14:19
  • 765

叉积判断点在多边形内外 & poj2318

计算几何中长遇到的问题:判断特定点是否在平面多边形内部。向量叉积是一种方法,用于凸多边形。【优角:角度值大于180度小于360度。凸多边形:沿着多边形的一边做一条直线,如果剩下所有的部分都在直线的同侧...
  • theArcticOcean
  • theArcticOcean
  • 2015年09月21日 21:02
  • 939
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ2318 叉积判断点与直线的关系
举报原因:
原因补充:

(最多只允许输入30个字)