PRML读书笔记(三)

本文是PRML读书笔记的第三部分,主要探讨了线性基函数模型,包括最大似然和最小二乘法、正则化的最小二乘法、贝叶斯线性回归及其预测分布。通过分析不同基函数和正则化方法,揭示了线性回归模型在处理连续目标值预测中的原理和技巧。同时,还介绍了贝叶斯模型比较和证据近似方法,讨论了如何在模型选择中平衡偏差与方差。
摘要由CSDN通过智能技术生成

回归的目标是在给定输入的情况下,预测具有连续性质的目标值。线性回归中的线性是相对于参数而言的。

3.1 线性基函数模型(Linear Basis Function Models)

最简单的线性回归模型是: y(x,w)=w0+w1x1++wDxD ,很明显这个模型不足以表达复杂的模型,但是我们能够从这个模型中得出线性回归模型的一般形式

y(x,w)=w0+j=1Mwjϕj(x)(1)

其中 ϕj(x) 即基函数,该函数可以是任意的函数,一般为非线性函数(为了提高模型的表达能力); w0 为偏置,假设我们令 ϕ0(x)=1 ,那么上式就可以简化成

y(x,w)=j=0Mwjϕj(x)=wTϕ(x)

整个模型对于输入是非线性的,而对于参数是线性的,这样就在提高模型表达能力的同时,也简化了模型。但是这种简化也导致了明显的限制,后面会详细介绍。

第一章中的曲线拟合,我们令 ϕj(x)=xj ,多项式基函数是输入变量的全局函数,如果一个输入变量的区域改变会影响其他的输入区域,比如 (2,1,1,1)(2,1,1,9) ,但是如果采用如高斯基函数等局部函数的话,就不会出现这种情况。

常见的几类基函数:
1. 多项基函数: ϕj(x)=xj
2. 高斯基函数: ϕj(x)=exp{ (xμj)22s2}
3. sigmoid: ϕj(x)=σ(xμjs),σ(a)=11+exp(a)

basis_function

3.1.1 最大似然和最小二乘法

假设目标值t由判别函数与一个额外的噪声给出: t=y(x,w)+ϵ , 其中噪声为一个均值为0、精度为 β 的高斯噪声。那么

p(t|x,w,β)=N(t|y(x,w),β1)

假设我们令其损失函数为平方损失函数(square loss function),那么最优预测值就与条件均值一致

E[t|x]=tp(t|x)dt=y(x),w))

其中 p(t|x)=p(t|x,w,β) 。需要注意的是高斯噪声假设隐含t在给定x的条件分布是单峰的,这个性质可能对于某些应用不太合适。作为扩展,我们可以采用混合高斯分布。

X={ x1,,xN} ,其对应的值为 t={ t1,,tN} ,那么

p(t|X,w,β)=n=1NN(t|y(xn,w),β1)

为了使公式保持整齐,我们可以将上式写成

p(t|w,β)lnp(t|w,β)ED(w)===n=1NN(t|wTϕ(xn),β1)N2lnβN2ln2πβED(w)12n=1N{ tnwTϕ(xn)}2

要使 p(t|w,β) 最大,那么

00wMLΦ====lnp(t|w,β)wn=1N{ tnwTϕ(xn)}ϕ(xn)T(ΦTΦ)1ΦTtϕ0(x1)ϕ0(x2)ϕ0(xN)ϕM1(x1)ϕM1(x2)ϕM1(xN)

如果我们将偏置参数 w0 提出来,那么

ED(w)w0==12n=1Ntnw0j=1M1wjϕj(xn)21Nn=1Ntnj=1M1wj{ 1Nn=1Nϕj(xn)}

由上面公式我们可以看出,偏置参数 w0 补偿平均目标值与基函数加权平均值的差异。

1βML=1Nn=1N{ tnwTMLϕ(xn)}2

我们可以得到预测值与噪声的精度无关,但噪声的精度可以作为衡量预测值与目标值差异的一个标准。

3.1.2 最小二乘的几何形状

首先考虑坐标轴为 tn 的N维空间,那么 tn={ t1,,tN}T 就是这个空间里的一个向量。那么 φj={ ϕj(x1),

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值