排序算法系列:选择排序算法

概述

这是一个相对简单的排序算法。为什么这么说呢?因为不需要什么思考,你就可以掌握并使用它。


版权说明

著作权归作者所有。
商业转载请联系作者获得授权,非商业转载请注明出处。
本文作者:Q-WHai
发表日期: 2016年5月24日
本文链接:https://qwhai.blog.csdn.net/article/details/51491810
来源:CSDN
更多内容:分类 >> 算法与数学


目录

算法原理

选择排序算法也需要将一个完整的序列切分成两个部分,一个部分有序,一个部分无序。这一点它和插入排序是一致的。在前面我们说插入排序是将第 [i + 1] 个元素插入到第一部分的有序序列中,如果你还有印象的话。那么在选择排序中则是第 j 个元素(i < j <= n),插入到第 i 个位置。
下面这幅图可以帮助你更好地理解这一点(当然你可以完全不需要图解的帮助)。

这里写图片描述


算法步骤

  1. 序列会被人为抽象地分成两个部分,分别定义成序列 T1 和序列 T2(原始序列为 T0)。
  2. 默认 T1 序列中的第 0 个元素是有序的(因为只有一个元素 a[0] 嘛,自然是有序的);
  3. 从 i = 0 开始,每次从 T2 中选出一个最小的元素 a[minIndex],将 a[minIndex] 与 a[i] 进行交换;
  4. 重复过程 3,直到序列 T2 中的元素全部被填入到序列 T1

算法实现

/*
     * 排序算法的核心模块
     * 
     * @param array
     *      待排序数组
     */
    private void sortCore(int[] array) {
        int arraySize = array.length;
        
        for (int i = 0; i < arraySize; i++) {
            int minValue = Integer.MAX_VALUE;
            int minIndex = 0;
            for (int j = i; j < arraySize; j++) {
                if (minValue > array[j]) {
                    minValue = array[j];
                    minIndex = j;
                }
            }
            
            ArrayUtils.swap(array, minIndex, i);
        }
    }

算法复杂度

排序方法时间复杂度空间复杂度稳定性复杂性
平均情况最坏情况最好情况
选择排序O($n^{2}$)O($n^{2}$)O($n^{2}$)O(n)稳定简单

Ref

  • 《大话数据结构》

Github源码下载


征集

如果你也需要使用ProcessOn这款在线绘图工具,可以使用如下邀请链接进行注册:
https://www.processon.com/i/56205c2ee4b0f6ed10838a6d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值