CSA

原创 2001年05月22日 07:48:00
 

1.1 Aim of this Assignment<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />

 

To show how the inputs to an adder circuit may be modified to make the resulting circuit perform other useful functions.

 

1.2Outline Circuit of the Device

 

The figure below shows a multi-bit adder having inputs A( a number), B(a number), and C0( a single bit). The adder forms an output, F, where F=A plus B plus C0. T is also a number, and Cin, M1 and M0 are each single bits. Two logic circuits generate outputs B and C0 as shown.

 

 

<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" />

Adder

 A                    B

                        C0

              F

Logic

Logic

M1

M2

 A

 T

Cin

 


                                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 


(figure 1)

 

 

2.1 Task

 

Obtain Boolean expressions for the two logic circuits such that the output F is according to the following table. Here, Bi(Ti, M1, M0) and C0(Cin, M1, M0).

 

M1   M0

    F

0     0

A plus T

0     1

A minus T

1     0

A - 1

1     1

A+1

 

(table 1.1)

 

Here, F = A plus B plus C0. While Bi = (Ti, M1, M0) and C0(Cin, M1, M0), we can finish table 1.1 like below. F=A plus Bi and C.

 

M1   M0

    F

     Bi

     C0

0     0

A plus T

Ti

0

0     1

A minus T

Not Ti

1

1     0

A - 1

1

0

1     1

A+1

0

1

                                                                                                                                                                 (table 1.2)

 

 

i) A logic expression that relates bit Bi to bit Ti and M1 and M0.

 

From figure 1.1,we can see:

 Here,

M1  M0  Ti           Bi

0     0     0            0

0     0     1            1

0     1     0            1

0     1     1            0

1     0     0            1

1     0     1            1

1     1     0            0

1     1     1            0

 

                                                 (table 1.3)

 

From the table1.3, we can draw a map for function Bi

.

Bi

M1

Ti

M0

 


                                  

0

1

0

1

1

0

0

1

 

 

                            (table 1.4)

 

 

 

 

From the table 1.4, here Boolean Expression for Bi.

Bi = M1M0’ + TiM0’ + Ti’M1’M0

(  Ti’  =  not Ti,

M1’  =  not M1,

M0’  =  not M0.)

 

Here, we can prove it:

 

M1M0’

TiM0’

Ti’M1’M0

M1   M0

    F

     Bi

   0  1

   Ti  1

 Ti’  1  0

0     0

A plus T

Ti

   0  1

   Ti  0

 Ti’  1  1

0     1

A minus T

Not Ti

   1  1

   Ti  1

 Ti’  0  0

1     0

A - 1

1

   1  0

   Ti  0

 Ti’  0  1

1     1

A+1

0

 

(Table 1.5)

 

ii) A logic expression that relates C0 to Cin and M1 and M0.

 

       While C0(Cin, M1, M0), we know that C0 depends on Cin and M1 and M0. From the figure 1.1, we can see:

 

 

M1  M0  Cin         C0

0     0     0            0

0     0     1            0

0     1     0            1

0     1     1            1

1     0     0            0

1     0     1            0

1     1     0            1

1     1     1            1

 

                                                 (table 1.7)

 

From the table 1.7,  we can draw a map for function C0.

C0

M1

Cin

M0

 

 


                                  

0

1

1

0

0

1

1

0

 

 

(table 1.8)

 

From the table 1.8, we find the Boolean Expression for C0:

C0 = M0.

Here we can prove it :

 

M1   M0

    F

     C0

0     0

A plus T

0

0     1

A minus T

1

1     0

A - 1

0

1     1

A+1

1

 

 

 

3.1 Conclusion:

 

In this assignment, we mainly aim on how an adder circuit maybe modified to obtain different function. By finding out the logical expression of Bi and C0, we can see how F relates to the states of inputs M1, M0, Ti and C0. F= A +( M1M0’ + TiM0’ + Ti’M1’M0) + M0.

 

CSA云计算关键领域安全指南4.0 (中文版)

《云安全指南》第1版在2009年4月1日发布,也就是在2009年的RSA会议上CSA成立后的第一个月。在当时尚无一个被业界广泛认可和普遍遵从的国际性云安全标准的形势下,《云安全指南》高屋建瓴而又不乏具...
  • SecSF
  • SecSF
  • 2017年10月26日 14:04
  • 141

JAVA CSA原理深度分析

看了一堆文章,终于把JAVA CAS的原理深入分析清楚了。 感谢GOOGLE强大的搜索,借此挖苦下百度,依靠百度什么都学习不到!   参考文档: http://www.blog...
  • dupengchuan
  • dupengchuan
  • 2016年05月19日 11:36
  • 739

自行車基本知識 (zz)

一. 自行車基本知識 1.自行車發展簡史: 自行車的發展是一個不斷改進而逐步提高的過程,到目前爲止仍處於發展之中。自行車誕生於十八世紀末,最初是作獵奇玩具出現的,而且是木製品,簡單到有兩個木輪和一...
  • is2120
  • is2120
  • 2016年01月14日 11:35
  • 2231

CSA 第五届讨论会 畅想

信-用-云:什么是信用云。就是可信,可用,云服务。可信是安全的子集,可用就是可用性,云计算就是弹性可伸缩。云email安全问题,云对抗的形式等。...
  • cctt_1
  • cctt_1
  • 2014年11月14日 23:02
  • 1493

[转] CSA 累加器的verilog 仿真

csa acc
  • u012369580
  • u012369580
  • 2018年01月02日 23:10
  • 24

3.CAS从数据库获取用户信息

CAS从数据库获取用户信息 1.1特别说明       由于考虑到后面的博文,所以在这里我们直接将工程弄到eclipse下去进行定制修改可能会更方便一些。我这是在项目中直接使用,可能基本上说的都是...
  • cl_andywin
  • cl_andywin
  • 2016年11月19日 10:03
  • 1492

ALOHA算法衍生系列:CSA

Coded Slotted ALOHA,CRDSA和IRSA的升级版,将MAC层数据包进行分段编码,在随机发送出去。接收端根据接收到的干净的段进行解码后迭代消除其他段的干扰...
  • MFCstream
  • MFCstream
  • 2016年09月08日 15:27
  • 666

verilog 实现加法器

verilog 实现加法器 (1)半加器的实现 原理:半加器是由两个一位输入实现的,与全加器的区别是不带进位加,相对比较简单,其逻辑关系为:  进位输出:Ci+1=Ai*Bi  和输出:Si = Ai...
  • w40306030072
  • w40306030072
  • 2014年03月07日 12:06
  • 5281

中国引入美式CSA农业模式第一人

中国引入美式CSA农业模式第一人(图) ...
  • lisky119
  • lisky119
  • 2013年08月06日 14:47
  • 1353

为政企云安全保驾护航,安普诺正式加入CSA云安全联盟

积极肩负云安全联盟正式成员的责任,携手联盟成员,共同推进云服务安全标准在国内的建立和推广,促进中国云计算的安全发展。...
  • Anprou
  • Anprou
  • 2017年04月28日 14:33
  • 304
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:CSA
举报原因:
原因补充:

(最多只允许输入30个字)