关闭

BZOJ1046 上升序列 [二分][贪心]

标签: BZOJ贪心二分
92人阅读 评论(0) 收藏 举报
分类:

1046: [HAOI2007]上升序列

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 5222  Solved: 1815
[Submit][Status][Discuss]

Description

  对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax

2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给

出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先

x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.

Input

  第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M

行每行一个数L,表示要询问长度为L的上升序列。N<=10000,M<=1000

Output

  对于每个询问,如果对应的序列存在,则输出,否则打印Impossible.

Sample Input


6

3 4 1 2 3 6

3

6

4

5

Sample Output


Impossible

1 2 3 6

Impossible

HINT

Source

code

LIS一开始求错了,尴尬了好久。我太弱了!!
求出LIS,询问>lis就impossible,否则二分求字典序最小的合法序列。

#include<bits/stdc++.h>
using namespace std;
inline void read(int &res){
    static char ch;int flag=1;
    while((ch=getchar())<'0'||ch>'9')if(ch=='-')flag=-1;res=ch-48;
    while((ch=getchar())>='0'&&ch<='9')res=res*10+ch-48;res*=flag;
}
const int N = 100005;
int a[N],dp[N],n,m,cnt,mx[N];
int main(){
    read(n);
    for(register int i=1;i<=n;i++)read(a[i]);
    for(register int l,r,tmp,i=n;i>=1;i--){
        l=1,r=cnt,tmp=0;
        while(l<=r){
            register int mid=(l+r)>>1;
            if(mx[mid]>a[i])tmp=mid,l=mid+1;
            else r=mid-1;
        }
        dp[i]=tmp+1;
        cnt=max(cnt,dp[i]);
        mx[dp[i]]=max(mx[dp[i]],a[i]);
    }
    read(m);
    while(m--){
        int x;read(x);
        if(x<=cnt){
            int last=0;
            for(register int j=1;j<=n;j++)
                if(dp[j]>=x&&a[j]>last){
                    printf("%d",a[j]);
                    if(x!=1)printf(" ");
                    last=a[j];--x;
                    if(!x)break;
                }
            puts("");
        }else puts("Impossible");
    }
    return 0;;
}

这里写图片描述

0
0
查看评论

[BZOJ1046][HAOI2007]上升序列

原题地址题目大意:求长度为n的数列中长度为Li的上升子序列,要求该子序列字典序最小.
  • Zvezda_
  • Zvezda_
  • 2015-08-24 23:23
  • 289

bzoj1046 [HAOI2007]上升序列

题意对于一个给定的S=a1,a2,a3,…,anS={a1,a2,a3,…,an},若有P=ax1,ax2,ax3,…,axmP={ax1,ax2,ax3,…,axm},满足(x1<x2<…<xmx1 < x2 < … < xm)且(ax1<ax2<…...
  • aziint
  • aziint
  • 2017-09-30 22:44
  • 46

【bzoj1046】 HAOI2007—上升序列

http://www.lydsy.com/JudgeOnline/problem.php?id=1046 (题目链接)题意:给出一个数列,求数列中长度为L的下标字典序最小的上升子序列。Solution   将数列倒过来求一遍不上升子序列,记录下以当前数为结尾的最长不上升序列的长度,也就是记录下了原...
  • MashiroSky
  • MashiroSky
  • 2016-08-24 16:14
  • 203

[BZOJ1046] [HAOI2007]上升序列

传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1046题目大意对于1个数列,求出长度为a的位置字典序最小的LIS题解位置字典序最小,也就是说,只有遇到合法的就是字典序最小 怎么判断合法? 对于一个数它的后面LIS长度大于等于要的,并且比已加...
  • slongle_amazing
  • slongle_amazing
  • 2015-09-24 20:37
  • 270

[BZOJ1046][HAOI2007]上升序列(dp+贪心)

题目描述传送门题目大意:对于一个给定的S={a1,a2,a3,…,an}S=\{a_1,a_2,a_3,…,a_n\},若有P={x1,x2,x3,…,xm}P=\{x_1,x_2,x_3,…,x_m\},满足(x1<x2<…<xm)(x_1 < x_2 < … <...
  • Clove_unique
  • Clove_unique
  • 2017-04-23 20:30
  • 320

BZOJ1046: [HAOI2007]上升序列

Portal首先是否存在很容易。 考虑如何输出最小字典序的方案。注意。。是位子的字典序,不是值。。 那么这样的话,倒过来做一遍最长下降子序列。f[i]f[i]表示以ii开头的最长上升子序列长度、找答案的时候就顺着找,每次满足条件就输出。【代码】#include <iostream> ...
  • Ep1C_HeReT1c
  • Ep1C_HeReT1c
  • 2017-03-06 16:11
  • 103

BZOJ1046/HAOI2007上升序列

BZOJ1046/HAOI2007上升序列
  • sherlock_zhuang
  • sherlock_zhuang
  • 2016-03-04 22:36
  • 143

【BZOJ1046】 [HAOI2007]上升序列

题意:给出数列,每次询问求出长度为s且序号的字典序最小的上升序列 思路:最坑的就是这种题不给spj 先来一发lis,每个位置记录以此数为结尾的上升序列最短长度 然后输出时,在剩余的数足够的情况下选最前面的 代码: #include #define N 10009 using namesp...
  • wzf_2000
  • wzf_2000
  • 2016-12-15 15:09
  • 114

Bzoj1046: [HAOI2007]上升序列

题面 传送门 Sol 先求出最长上升序列,倒着求,然后贪心的往后选,选满足的 求最长上升序列我用的是树状数组 # include # define IL inline # define RG register # define Fill(a, b) memset(a, b, s...
  • oi_Konnyaku
  • oi_Konnyaku
  • 2018-01-25 21:33
  • 52

bzoj1046: [HAOI2007]上升序列

Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 Input 第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M行每行一个数L,表示要询问长度为L的上升序...
  • Ra1nBow_Chan
  • Ra1nBow_Chan
  • 2015-02-03 14:34
  • 337
    RES
    假作真时真亦假
    REZ
    无为有处有还无
    个人资料
    • 访问:21471次
    • 积分:2986
    • 等级:
    • 排名:第13950名
    • 原创:204篇
    • 转载:22篇
    • 译文:0篇
    • 评论:35条
    博客专栏
    文章分类
    最新评论