席卷一切的深度学习?

深度学习的风暴刮了又刮,终于挂到了我这个学渣这里。

始于辛顿,乐存等大牛,几年前余凯,老师木,梁斌等都在研究这个,直到现在,我才得以在这上面有所领悟。

今天介绍的这篇文章《CNN Features off-the-shelf: an Astounding Baseline for Recognition》是微博上赵乐平usc推荐的,看完后非常震撼。

文章的主旨一句话就概括清楚了:深度学习结合卷积神经网络应该作为视觉识别任务的首选方案。

具体原委听我细细道来:

文章中有一幅图,介绍了CNN+线性SVM方法和其他方法的流程对比:


对,这就是简单与复杂的差别,要注意到,这两者的结果都是可以竞争的,很多时候CNN的要更好!

文章介绍,最近深度学习很火啊,但是我没那么多的时间去做训练,没有多少GPU编程知识,好可惜。不过没关系,OverFeat是在ImageNet库上训练好的深度卷积神经网络模型,它已经开源了,我们可以用它来对普通的图片进行特征提取,然后直接进入分类器训练,对比一下和现在的State-of-art方法的识别结果啊!

这句话真正打中了我的心,哦,对啊,SIFT,HOG都是特征提取的方法,CNN也不例外,虽然OverFeat的训练时在特定库上进行的,但是这个库包罗万象,而且CNN提取的特征已经在很多场合中证明是非常强大的,那么把这个特定的CNN网络用于普通的图片的特征提取,也并不是没有道理的事。

作者在文中对很多不同的视觉任务进行了评比,包括图片分类,场景分类,精细分类(同一大类中各种子类),标签检测(从图片中抽象出来的标签),图像检索等等。这些任务中,简单的CNN特征+线性SVM在结果上至少是可以和State-of-art竞争的,同时在很多任务中是打败了State-of-art的,要知道,State-of-art通常都需要各种复杂的特征提取方式以及非常长的训练时间,现在一切都可以用简单的CNN特征+线性SVM来比拟了。看一个简单的结果:


CNN赢的毫无压力有木有!

我常感觉,计算机视觉的中心任务就是特征的提取,或者说图像的表达方式。深度CNN是一个划时代的技术,它的确应该成为所有计算机视觉任务的基准方法:所有新的算法都要和它比一比...或者在做很多事情的时候,直接拿过来用就行了,这就是标题Off-the-shelf的含义不是吗?


  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习、深度学习、⼈⼯智能三步⾛,⼈⼯智能必须知道的 ⼏种深度学习算法 序 序 声明:以下是博主精⼼整理的机器学习和AI系列⽂章,博主后续会不断更新该领域的知识: 有需要的⼩伙伴赶紧订阅吧。 ⼈⼯智能的浪潮正在席卷全球,诸多词汇时刻萦绕在我们⽿边:⼈⼯智能(Artificial Intelligence)、机器学习(Machine Learning)、 深度学习(Deep Learning)。不少⼈对这些⾼频词汇的含义及其背后的关系总是似懂⾮懂、⼀知半解。 ⼈⼯智能的研究领域也在不断扩⼤,上图展⽰了⼈⼯智能研究的各个分⽀,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、 ⾃然语⾔处理、推荐系统等。 ⼈⼯智能⼀定程度上来说是机器学习喝深度学习的深层次应⽤,要想学好⼈⼯智能,我们需要掌握的哪些经典算法呢? ⼀起来看看吧。 前⾔ 前⾔ 深度学习是很多⼈⾯临的⼀个挑战,因为它在过去的⼗年中已经慢慢地改变了形式。为了在视觉上设置深度学习,下图展⽰了AI,机器学习 和深度学习三者之间关系的概念。 ⼈⼯智能领域⼴泛,已经有很长⼀段时间了,深度学习是机器学习领域的⼀个⼦集,AI的⼀个⼦领域。 ⼀般将深度学习⽹络与"典型"前馈多层⽹络(FP)区分开来的⽅⾯如下: ⽐以前的⽹络更多的神经元 更复杂的连接层的⽅式 "寒武纪⼤爆炸"的计算训练能⼒ ⾃动特征提取 当我说"更多的神经元",意思是神经元数量已经上升了多年来表达更复杂的模型。 然后,深度学习可以被定义为具有四个基本⽹络体系结构之⼀中的:⼤量'参数和层'的神经⽹络: ⽆监督的预训练⽹络 卷积神经⽹络 回归(复)神经⽹络 递归神经⽹络 在本⽂中,我们主要关注后三种架构。 ⼀、卷积神经⽹络 ⼀、卷积神经⽹络 是基本上已经跨越使⽤共享权重的空间延伸的标准神经⽹络。CNN被设计为通过在内部卷积来识别图像,其看到图像上识别的对象的 边缘。 ⼆、回归神经⽹络 ⼆、回归神经⽹络 是基本上已经通过具有边缘,其递进给到下⼀个时间步长,⽽不是成在同⼀时间步骤中的下⼀层跨越时间延长标准神经⽹络。RNN被 设计为识别序列,例如语⾳信号或⽂本。它⾥⾯的循环意味着⽹络中存在短暂的内存。 三、递归神经⽹络 三、递归神经⽹络 更像是⼀个分层⽹络,其中输⼊序列确实没有时间⽅⾯,但输⼊必须以树状⽅式分层处理。以下10种⽅法可以应⽤于所有这些体系结 构。 经典算法 经典算法 1 - 反向传播( 反向传播(BP) ) Back-propagation只是⼀种计算函数偏导数(或梯度)的⽅法,函数具有函数组成的形式(如神经⽹络)。当你使⽤基于梯度的⽅法(梯 度下降只是其中之⼀)解决优化问题时,你需要在每次迭代中计算函数梯度。 对于神经⽹络⽽⾔,⽬标函数具有合成的形式 你如何计算梯度? BP算法是Delta规则的推⼴,要求每个⼈⼯神经元(节点)所使⽤的激励函数必须是可微的。BP算法特别适合⽤来训练前向神经⽹络,有两 种常见的⽅式来做到这⼀点: (⼀)分析微分,你知道函数的形式,只需使⽤链式规则(基本演算)来计算函数梯度。 (⼆)使⽤有限差分进⾏近似微分。 其中(⼆)⽅法的计算量很⼤,因为评估函数的数量级是 O(N),其中 N 是参数的数量。与分析微分相⽐,就相形见绌了。然⽽,有限 差分通常⽤于在调试时验证后端时很有效。 2 - 随机梯度下降( 随机梯度下降(SGD) ) 想想渐变下降的⼀种直观的⽅式是想象⼀条源于⼭顶的河流的⼩路。 梯度下降的⽬标正是河流努⼒实现的⽬标 - 即到达从⼭上迈着扯着蛋的步⼦溜向⼭脚。 现在,如果⼭的地形是这样形成的,即在到达最终⽬的地(这是⼭麓的最低点)之前,河流不必完全停下来,那么这是我们所希望的理想情 况。 在机器学习中,我们已经找到了从初始点(⼭顶)开始的解的全局最⼩值(或最优值)。 但是,这可能是因为地形的性质使得路径上的⼏个坑,这可能会迫使河流陷⼊困境,在机器学习⽅⾯,这种'坑'被称为局部最优。 因此,梯度下降倾向于卡在局部最⼩值,这取决于地形的性质(或ML中的函数)。 但是,当你有⼀个特殊的⼭地形(形状像⼀个碗,在ML术语中称为凸函数),该算法始终保证找到最佳。 你可以想象这再次描绘了⼀条河流。这些特殊的地形(⼜称凸函数)总是在ML中优化的祝福。另外,取决于你最初从哪⾥开始(即函数的 初始值),你可能会⾛上⼀条不同的路。同样,根据河流的爬升速度(即梯度下降算法的学习速率或步长),你可能会以不同的⽅式到达最 终⽬的地。 3 - 学习率衰减 学习率衰减 根据随机梯度下降优化程序调整学习率可以提⾼性能并减少训练时间。有时这被称为 学习速率退⽕ 或 ⾃适应学习速率。 最简单的学习速率:是随着时间的推移⽽降低学习速度。当使⽤较⼤的学习速率值时,它们具有在训练过程开始时进⾏⼤的改变的益处,并 且降低了
ChatGPT是一种由OpenAI开发的预训练语言模型,它是基于Transformer架构并使用了大量的文本数据训练而成。 首先,2017年,谷歌大脑团队发表了论文《Attention is all you need》,提出Transformer模型,打下了GPT的基础; 2018年,基于Transformer 架构,OpenAI发布了GPT-1模型,基于Transformer的生成式预训练语言模型。它有1.17亿个参数,用于回答给定的问题 ; 2019年,OpenAI发布了GPT-2模型,具有1.5亿个参数,可以生成一些简单的文本,但是不够强大,对于很多问题无法做出处理; 2020年,OpenAI发布了GPT-3模型,具有1.75万亿个参数,相对于GPT-2模型,功能更加强大,可以流畅的生成一些文本,可称为人工智能的划时代标志; 2022年,OpenAI推出ChatGPT,基于GPT-3的基础上开发出来的人工智能对话机器人,发布的那一刻,瞬间席卷全球,功能基本达到完善,已经可以独立处理多个领域的日常问题,满足了人们对于未来智能机器人的幻想,更有甚者,产生了“人工智能是否会取代人类日常工作”的恐惧心理。 ChatGPT语言底层框架: Transformer是一个由深度神经网络组成的多层网络,其模型的结构类似于神经元,Transformer 模型主要分为两大部分,分别是 Encoder 和 Decoder,建立了词与词之间的复杂关系,其参数之多,可以说其本身的语言模型已经接近人类,Transformer的训练时并行的,大大增加了效率; ChatGPT的训练过程: 首先进行监督学习,就是是指利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,简单说就是在已知“答案”的情况下,训练机器输出的答案和标准答案的差距,通过不断的调整参数,达到训练效果的一种学习方式; 其次,奖励模型,针对一个问题,机器生成多个不同的回答,人工进行打分排序,训练奖励模型; 最后,强化学习,又称再励学习、评价学习或增强学习,使训练对象与环境不断进行交互,得到环境的反馈信息并调整自己的策略,最终完成特定的目标或者使得某个行为利益最大化,ChatGPT就是结合奖励奖励模型,不断的通过强化学习,更新预训练模型参数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值