【计算几何——直线相交】POJ 1039

原创 2012年03月29日 21:22:36

黑书例题

#define eps 1e-9
#define pi acos(-1.0)

struct Point{
    double x,y;
};
int dbl_cmp(double d){
    if (fabs(d)<eps)
        return 0;
    return d>0?1:-1;
}
double det(double x1,double y1,double x2,double y2){
    return x1*y2-x2*y1;
}
double cross(Point a,Point b,Point c){
    return det(b.x-a.x,b.y-a.y,c.x-a.x,c.y-a.y);
}
int segcross_simple(Point a,Point b,Point c,Point d){
    if (dbl_cmp(cross(a,b,c))*dbl_cmp(cross(a,b,d))<=0)
        return 1;//相交
    return 0;//不相交
}
int segcross(Point a,Point b,Point c,Point d,Point &p){//求交点
    double s1,s2;
    int d1,d2;
    s1=cross(a,b,c);
    s2=cross(a,b,d);
    d1=dbl_cmp(s1);
    d2=dbl_cmp(s2);
    //规范相交求交点
    if ((d1^d2)==-2){
        p.x=(c.x*s2-d.x*s1)/(s2-s1);
        return 1;
    }
    if (d2==0){
        p.x=d.x;
        return 1;
    }
    if (d1==0){
        p.x=c.x;
        return 1;
    }
    return 0;
}
int main(){  
    Point up[22],bottom[22],p;
    int n,i,j,k;
    bool all;
    double ans;
    while (scanf("%d",&n) && n){
        all=false;
        ans=MIN;
        for (i=1;i<=n;i++){
            scanf("%lf%lf",&up[i].x,&up[i].y);
            bottom[i].x=up[i].x;
            bottom[i].y=up[i].y-1.0;
        }
        for (i=1;i<=n && !all;i++){
            for (j=1;j<=n;j++){
                for (k=1;k<=n;k++)
                    if (segcross_simple(up[i],bottom[j],up[k],bottom[k])==0)
                        break;
                if (k>n){//都没有交点
                    all=true;
                    break;
                }
                if (k>max(i,j)){
                    segcross(up[i],bottom[j],up[k],up[k-1],p);
                    ans=max(ans,p.x);
                    segcross(up[i],bottom[j],bottom[k],bottom[k-1],p);
                    ans=max(ans,p.x);
                }
            }
        }
        if (all)
            printf("Through all the pipe.\n");
        else
            printf("%.2lf\n",ans);
    }
    return 0;
}





















版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ 1039-Pipe(计算几何-线段相交、求交点)

Pipe Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10638   Accepted...

poj3304 计算几何 线段与直线相交

题意:给定n条线段,确定是否存在一条直线,使得这n条线段在这条直线上的射影具有公共点 可将问题转化为是否存在一条直线经过所有的线段,证明见依然的博客:http://blog.sina.com.cn/...

POJ1269 简单的计算几何判断直线相交

Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8898...

POJ1127——Jack Straws(计算几何,直线相交)

Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4059   Accepted: 1836...

POJ 1127 —— 计算几何 && 线段相交

Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2860   Ac...

计算几何的直线、线段的相交判断

矢量       如果一条线段的端点是有次序之分的话,那么这种线段就称为 有向线段,如果有向线段p1p2的起点p1在坐标的原点,则可以把它称为矢量 p2 矢量的加减     ...

poj3304——Segments(判断直线与多个线段相交)

DescriptionGiven n segments in the two dimensional space, write a program, which determines if there...

poj1039 Pipe (计算几何)

我的第一个计算几何的题目 题意:给出一个曲折的管道,求出光线能够到达的管道的最远点的横坐标。 思路:能够到达最远点的直线必然通过管道的一个上管道壁的折点和一个下管道壁的折点,枚举所有的这样的折点,...

POJ 1039 Pipe 计算几何题目。。

http://poj.org/problem?id=1039 叉乘真的是个好东西,把许多原来很难用计算机实验的情况编程数字的相乘,加,减,就连除几乎都没有了。。。 这题作为模板吧,因为我刚...

POJ 1039 Pipe (计算几何)

可以证明最终结果一定过边界上的两个点,因为如果未过两个点,可以把直线旋转成过两个点并使结果更优。 枚举两点,先求出该直线和a[1],b[1]所在直线的交点,如果在a[1],b[1]之间说明是合法的。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)