【计算几何——直线相交】POJ 1039

原创 2012年03月29日 21:22:36

黑书例题

#define eps 1e-9
#define pi acos(-1.0)

struct Point{
    double x,y;
};
int dbl_cmp(double d){
    if (fabs(d)<eps)
        return 0;
    return d>0?1:-1;
}
double det(double x1,double y1,double x2,double y2){
    return x1*y2-x2*y1;
}
double cross(Point a,Point b,Point c){
    return det(b.x-a.x,b.y-a.y,c.x-a.x,c.y-a.y);
}
int segcross_simple(Point a,Point b,Point c,Point d){
    if (dbl_cmp(cross(a,b,c))*dbl_cmp(cross(a,b,d))<=0)
        return 1;//相交
    return 0;//不相交
}
int segcross(Point a,Point b,Point c,Point d,Point &p){//求交点
    double s1,s2;
    int d1,d2;
    s1=cross(a,b,c);
    s2=cross(a,b,d);
    d1=dbl_cmp(s1);
    d2=dbl_cmp(s2);
    //规范相交求交点
    if ((d1^d2)==-2){
        p.x=(c.x*s2-d.x*s1)/(s2-s1);
        return 1;
    }
    if (d2==0){
        p.x=d.x;
        return 1;
    }
    if (d1==0){
        p.x=c.x;
        return 1;
    }
    return 0;
}
int main(){  
    Point up[22],bottom[22],p;
    int n,i,j,k;
    bool all;
    double ans;
    while (scanf("%d",&n) && n){
        all=false;
        ans=MIN;
        for (i=1;i<=n;i++){
            scanf("%lf%lf",&up[i].x,&up[i].y);
            bottom[i].x=up[i].x;
            bottom[i].y=up[i].y-1.0;
        }
        for (i=1;i<=n && !all;i++){
            for (j=1;j<=n;j++){
                for (k=1;k<=n;k++)
                    if (segcross_simple(up[i],bottom[j],up[k],bottom[k])==0)
                        break;
                if (k>n){//都没有交点
                    all=true;
                    break;
                }
                if (k>max(i,j)){
                    segcross(up[i],bottom[j],up[k],up[k-1],p);
                    ans=max(ans,p.x);
                    segcross(up[i],bottom[j],bottom[k],bottom[k-1],p);
                    ans=max(ans,p.x);
                }
            }
        }
        if (all)
            printf("Through all the pipe.\n");
        else
            printf("%.2lf\n",ans);
    }
    return 0;
}





















计算几何之相交直线交点的求法

假设交点为p0(x0,y0)。则有: (p1-p0)X(p2-p0)=0 (p3-p0)X(p2-p0)=0 展开后即是 (y1-y2)x0+(x2-x1)y0+x1y2-x2y1=0 (y...
  • YCQ_Lancet
  • YCQ_Lancet
  • 2017年08月15日 10:45
  • 330

POJ 1039 Pipe【计算几何+直线相交】

题目链接题意:有一根管子,从管口射进去一根光线,问最远能到的点的横坐标。枚举上下两个端点。先判断经过这两个端点的光线是否能和管口相交,再计算这根光线所能达到的最远的点。要注意的地方: 1. 求的是横...
  • hhhhhhxh
  • hhhhhhxh
  • 2017年08月23日 18:47
  • 57

POJ 1039 Pipe(直线相交)

Pipe Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...
  • u014665013
  • u014665013
  • 2016年05月18日 21:59
  • 344

计算几何模板补充(三维空间体积、平面、直线、向量相关计算。附上hdu4741,求异面直线的最短距离与交点)

转自:http://www.cnblogs.com/wulangzhou/p/3326187.html Link:http://acm.hdu.edu.cn/showproblem.php?...
  • Enjoying_Science
  • Enjoying_Science
  • 2015年10月09日 17:02
  • 1024

计算几何----判断线段相交(一)

判断线段相交: 两个线段的交点个数可能有0个 1个或者无数个 判断两个线段相交,可以按照如下步骤: 判断A点B点是否在线段CD的两侧,即计算叉积时异号 判断C点和D点是否在线段AB的两侧,即...
  • liangzhaoyang1
  • liangzhaoyang1
  • 2016年04月07日 22:54
  • 1164

POJ 1269(计算几何+直线相交)

问题描述: We all know that a pair of distinct points on a plane defines a line and that a pair of lines ...
  • wust_cyl
  • wust_cyl
  • 2017年09月06日 10:41
  • 59

poj1269 Intersecting Lines(计算几何--两条直线的交点)

Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11307   Accept...
  • u013021513
  • u013021513
  • 2014年11月08日 23:05
  • 857

POJ 1039 Pipe(线段直线相交)

终于把这题过了。。。 体会到了计算几何的特点
  • u013112097
  • u013112097
  • 2014年04月24日 13:14
  • 267

占坑抽空补题解>_< 【杭电2015年12月校赛B】【计算几何】 Polygon 求直线和多边形的交线长度

去网上找找模板,就可以AC了 我计算几何弱 所以这题题解先放着…… Polygon Time Limit: 2000/1000 MS (Java/Others)    Memory Limit...
  • snowy_smile
  • snowy_smile
  • 2015年12月28日 13:22
  • 561

计算几何学习笔记之点和直线

向量的基本运算http://blog.csdn.net/cqbzwja/article/details/51030712 直线用参数方程表示,参数方程就是直线上任意一点,加上一个方向向量,以及参数t...
  • cqbzwja
  • cqbzwja
  • 2016年04月01日 15:30
  • 722
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【计算几何——直线相交】POJ 1039
举报原因:
原因补充:

(最多只允许输入30个字)