鲍尔默最后一次员工大会:声泪俱下别微软

原创 2013年09月29日 09:18:41

微软周四举办每年一度的全体员工大会,鲍尔默深情回忆当年往事,还各用一个词语对微软和几个对手做了总结。他总结说,苹果很“时尚”,亚马逊很“便宜”,谷歌则“渊博”,微软的特点是“实干”。

 

鲍尔默的最后一次员工大会:声泪俱下别微软

9月27日,微软本周四举办每年一度的全体员工大会,鲍尔默借最后一次参加大会的机会向员工告别,鲍尔默深情回忆当年往事,还各用一个词语对微软和几个对手做了总结。

在会议中,鲍尔默播放了迈克尔•杰克逊的歌曲“Wanna Be Startin' Somethin”并随着歌曲起舞,鲍尔默1983年首次参加微软公司会议时也播放了这首歌曲。歌曲结束后,鲍尔默泪流满面地对员工说:“你们正为全世界最伟大的公司工作,请享受这一切。”

鲍尔默强调,微软拥有光明的未来,在未来很多年内,微软仍将是一个伟大的公司。

他总结说,苹果很“时尚”,亚马逊很“便宜”,谷歌(微博)则“渊博”(knowingmore),微软的特点是“实干”(doingmore)。

当天,鲍尔默在流行音乐背景中登台,情绪激扬,嗓门极高。媒体称,到明年八月份之前,鲍尔默将退休,因此这是他最后一次参加微软全员大会。

当天数千名微软员工参加了大会,220辆大巴车把微软员工从雷德蒙总部运到了会场。全球的微软员工通过网络直播参加会议。

鲍尔默回忆当年告诉父母,计划从哈佛商学院退学,加入微软,他还回忆,父亲(长期担任福特汽车公司高管)曾问他什么是个人电脑。

鲍尔默说,微软将从一个软件为主的公司,变成一个更加创新的“设备+服务”公司,这将使得微软更加强大。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

微软前员工解读:鲍尔默在微软的3个阶段

最近《名利场》网络版周三刊登 “微软衰落” 的文章,文中批判微软不讲情理、残酷严历的绩效管理制、Windows至上的3个“毒瘤”让微软最近10年里一步一步走向衰落,我们暂且把目光从《名利场》移开,来看...

鲍尔默回应股东呼声:分拆微软无任何意义

微软首席执行官史蒂夫·鲍尔默 北京时间11月16日消息,微软首席执行官史蒂夫·鲍尔默(Steve Ballmer)周二在公司年度股东大会中表示,分拆公司没有任何的好处。 在今年的股东大会中...

鲍尔默宣布下台后,微软应该做好这几件事情

鲍尔默宣布下台后,微软进入了后鲍尔默时代,分析人士认为微软接下来需做好鲍尔默没有去做或没有做好的几件事:加强移动领域建设、努力保持影响力、从自身的错误中学习、投资更多的小公司、把握时机。 ...

微软CEO鲍尔默:Windows将运行在所有设备上

微软CEO鲍尔默在亚特兰大会议的主题演讲中反复重申,微软将全面转移到云端,并暗示Windows将超越传统PC,可以运行在各种设备上。 鲍尔默告诉听众,"今天全球各地得用户中有超过10亿台Window...

鲍尔默离开后,微软还能东山再起吗?

微软公司诞生于PC革命开始的时候,并在这个过程中脱颖而出。PC革命使得人们轻而易举地获得计算机能力。现在,移动革命又赋予了许多商界人士在他们想要的任何地方和任何时刻工作及流畅地在商务和个性追求之间切换...

微软鲍尔默:Surface的赌注比Xbox更大

众所周知,微软是一家名副其实的软件巨头,但在其发展过程中也屡屡涉足硬件业务,这其中最有代表性的无疑就是Xbox游戏主机和Surface平板电脑,微软CEO史蒂夫·鲍尔默(Steve Ballmer)在...

谈谈 微软 鲍尔默退休,他错在哪里?该怎么做!

微软的失败,鲍尔默的错误不是最主要,主要是Gates,我相信Gates是最后下决定的,虽然他是幕后,除了他不可能有其他人。 我以前难以理解一些大型企业难以面对环境变化的挑战,因为没有见过,现在经历了i...

鲍尔默:Google和苹果都是纸老虎

微软CEO鲍尔默日前在Web 2.0 峰会上接受John Battell的访问,当被问及微软在搜索、社交网络、云技术及移动通信等领域的计划,鲍尔默表现了他对微软的前景的强大信心,在这期间还拿Goo...

巨人之后的史蒂夫·鲍尔默和蒂姆·库克

由于看了很多媒体对史蒂夫·鲍尔默和蒂姆·库克的评论,大多数是对他们的贬义的评论,我觉得那些媒体只会跟风评论,其评论有不妥之处,我在此简单发表一下自己的小小的想法。       首先简单介绍一下这两个人...

为激发应用开发商兴趣,鲍尔默展示自用Surface

9月26日消息,据国外媒体报道,微软首席执行官史蒂夫·鲍尔默(Steve Ballmer)这两个月都会非常忙碌,他刚刚帮助诺基亚和宏达电发布完最新的Windows Phone 8设备,然后马上启程回国...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)