关闭

每天一点matlab——字符分割

1256人阅读 评论(0) 收藏 举报
分类:
1.1字符分割的基础
字符分割

任务是把多行或多字符图像中的每个字符从整个图像中分割出来,成为单个字符。对于字符分割的问题常常不被重视,但是字符的正确分割对字符的识别是至关重要
的。由于字符字体存在着多样性,所以在一般的字符识别系统中,字符识别之前要先对图像进行阈值化,然后再进行行字切分,以分割出一个个具体的二值表示的字
符图像点阵,作为单字符识别的输入数据。由于获得的文本图像不但包含了组成文本的一个个字符,而且包含了字符行间距与字间的空白,甚至还会带有各种标点符
号,这就需要采用一定的处理技术将文本中的一个个字符切分出来,形成单个字的图像阵列,以进行单字识别处理。这就需要两个步骤来完成,行切分和字切分。首
先由行切分得到一行行文本,然后在每行文本中进行列切分得到一个个单独的字符。
1.1.1行切分技术
行切分就是要将一行行字符切分出来,形成单行字符文本图像数据。这里我们以含有汉字的图像为例,介绍一下行切分技术。对于输入的二值化汉字图像从上到下逐行扫描并计算每个扫描行的像素,以获取图像的水

投影。我们会发现汉字图像沿行方向的水平投影比较有规律,投影中的每个波峰与图像中的每个文本行相对应,在相邻的两行之间有比较宽的一段投影信息为0,这
是对应了相邻两行之间的空白区域。根据这个规律,对行切分比较容易,可以把整幅的汉字图像在水平方向投影后,直接对汉字图像进行行切分。具体方法为:首先
分析投影图像,找到投影波峰所对应的文本行的位置,从而可以计算出每行的行距;其次对所有行的行距累加求和后,求出文本图像的标准行距,以标准行距对汉字
图像进行行的粗切分;最后在每一个粗切分出的行附近上下扫描,进行细微调整,选取最合适的分割位置。

4.1.2
字切分技术
字切分是从切分出的文本图像行中将单个的字符图像切分出来。字切分的正确与否直接影响识别结果,是字符识别系统中比较难的部分。我们还是以单个的汉字切分为例来说明。

以借助汉字图像行切分的思想,来确定字切分的主要方法:利用字与字之间的空白间隙在图像行垂直投影上形成的空白间隔将单个的字符图像切分出来。事实上,分
析图像行的垂直投影可以发现,垂直投影上的空白间隔部分不仅没有行与行之间的空白间隔部分宽,而且分布也不均匀。是因为在汉字文本中一般汉字间距远不如行
间距明显,同时汉字中有相当数量汉字是左、右结构或左、中、右结构的,这些汉字图像的垂直投影在一个单字的内部也会出现空白间隙,使得文本汉字的字切分比
行切分困难。为了解决这个问题,可以利用汉字间的间隔一般大于汉字内间隔这一特点先进行汉字的粗切分,再根据汉字基本是个方块图形这一事实进行细切分。具
体实现为:根据汉字的行切分,可以获得汉字的高度信息,从而可以估计出汉字的基本宽度;对粗切分出的每个汉字,以此宽度信息进行衡量,以粗切分的起始位置
为出发点,向左右两方向进行搜索,对起始位置进行细微的调整,从而使得字的切分更准确。这种方法不仅可以保证单个汉字的内部结构不被分离,而且还避免了切
除汉字的边缘,其切分结果基本提取出了完整的汉字,消除了笔划的误切除。

1.2
车牌字符分割简介
1.2.1
车牌字符串的特点
车牌照上的字符串具有以下几个特点:
(1)同一类的实际车牌中的字符位置是固定不变的,一个车牌上的所有字符的高宽比是相等的(除了“1” )
(2)
根据牌照种类的不同,有的牌照是有边框的,不能直接进行投影分割。
(3)
车牌上的字符与背景对比较大,但是由于曝光、焦距等原因,字符产生横向扭曲,而非字符区域时常也有高亮度区域。
(4)
由于车牌自身的磨损等原因或采用的二值化算法的局限性,使得在图像预处理之后,仍然存在断裂的字符。
(5)
车牌的字符串信息受到车牌污损及两个铆钉信息的影响。其中特点(1)是在牌照字符分割时的有利信息,如:字符固定的高宽比等。其余的特点都增加了车牌字符分割的难度。

 

0
2

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:15197次
    • 积分:197
    • 等级:
    • 排名:千里之外
    • 原创:3篇
    • 转载:13篇
    • 译文:0篇
    • 评论:0条
    文章存档